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Channel Model

This is the general setup of a diamond channel:

Figure : Diamond network with relay conferencing
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Channel Model Continued

The particular channel being studied has three parts:

1 The broadcasting portion

Modelled by two noise-less bitpipes, each of capacities C1 and C2 from
the source to relays 1 and 2, respectively.

2 The conferencing portion

Modelled by two identical noise-less bitpipes of capacity C0 from one
relay to the other

3 The multiple-access portion

General scenario considered: PY |X1,X2

We are interested in studying the capacity of this channel and look at some
special cases of the MAC.
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Problem Definition

The source encoder maps message W ∈ [1 : 2nR] onto Sn1 and Sn2 and
transmits through the noiseless bit-pipes to relays 1 and 2, respectively,
i.e.

Sn1 = f0,1(W ), Sn2 = f0,2(W ). (1)

Sn1 and Sn2 are such that H(Sn1 ) ≤ nC1 and H(Sn2 ) ≤ nC2.

After receiving Sni , two relays can communicate through K rounds in a
round-robin fashion. At round k, relay i sends Vi,k to the other relay
based on Sni and message from the other relay in previous rounds, i.e.

V1,k = f1,2(Sn1 , V
k−1
2 ), V2,k = f2,1(Sn2 , V

k−1
1 ) (2)

for k = 1, 2, ...,K and Vi,0 = 1 for i = 1, 2. V Ki satisfies the constraint
H(V Ki ) ≤ nC0 for i = 1, 2.
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Problem Definition

Then relay i maps its received signal Sni from the transmitter and
V K{1,2}\i from the other relay to Xn

i as the input to the MAC for
i = 1, 2, i.e.

Xn
1 = f1,3(Sn1 , V

K
2 ), Xn

2 = f2,3(Sn2 , V
K
1 ). (3)

The MAC is characterized by its input alphabet X1, X2, output
alphabet Y and transition probability p(y|x1, x2). The receiver decodes
an estimate Ŵ = g(Y n) of W .

Definition

The capacity of the diamond network considered is defined as the maximum
R such that for any ε > 0 there exists {fi,0, fi,{1,2}\i, fi,3, g}, i = 1, 2 and n

sufficiently large such that Pr(W 6= Ŵ ) ≤ ε.
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Cutset Bound

The cut-set bound of the diamond channel is as follows:

R ≤ max
p(x1,x2)

min


C1 + C2

I(X1, X2;Y )

C1 + C0 + I(X2;Y |X1)

C2 + C0 + I(X1;Y |X2).

(4)

The cut-set bound does not fully capture the trade-off between sending
independent messages at the encoder, represented by the C1 + C2 term, and
the full cooperation at the MAC, represented by the I(X1, X2;Y ) term. A
tighter upper bound can be derived.
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Improved Upper Bound

Theorem [Zhao-Ding-Khisti ’15]

An upper bound of the diamond network with conference is

R ≤ max
p(x1,x2)

min
p(u|x1,x2,y)

β,

where

β = min



C1 + C2

I(X1, X2;Y )

C1 + C0 + I(X2;Y |X1)

C2 + C0 + I(X1;Y |X2)
1
2 (C1 + C2 + 2C0 + I(X1, X2;Y |U)

+I(X1;U |X2) + I(X2;U |X1)).

(5)

with |U| ≤ |X1||X2||Y|+ 2.
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Proof Sketch

Starting from Fano’s inequality, we have

nR ≤ I(W ;Y n) + nε (6)

· · · (7)

≤ nC1 + nC2 − I(Sn1 ;Sn2 ) + nε (8)

The I(Sn1 ;Sn2 ) ≥ 0 term captures the trade-off!

Observe: V K1 = f(Sn1 , V
K−1
2 ) and V K−12 = f(Sn2 , V

K−2
1 )

Therefore, V K1 is a function of both Sn1 and Sn2 . Same for V K2 .
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Proof Sketch

We need to find the relation between I(Sn1 ;Sn2 ) and I(Xn
1 ;Xn

2 ), as follows,

I(Xn
1 ;Xn

2 ) (9)

≤ I(Sn1 , V
K
2 ;Sn2 , V

K
1 ) (10)

= I(Sn1 ;Sn2 ) + I(V K2 ;Sn2 |Sn1 )

+ I(V K1 ;Sn1 |Sn2 ) + I(V K1 ;V K2 |Sn1 , Sn2 ), (11)

where (10) is due to the Markov chain Xn
1 ↔ (Sn1 , V

K
2 )↔ (Sn2 , V

K
1 )↔ Xn

2 .
For the terms in (11),

I(V K1 ;Sn1 |Sn2 ) = H(V K1 |Sn2 ) (12)

I(V K2 ;Sn2 |Sn1 ) = H(V K2 |Sn1 ) (13)

I(V K1 ;V K2 |Sn1 , Sn2 ) = 0, (14)

are true since V K1 and V K2 are both deterministic functions of (Sn1 , S
n
2 ).
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Proof Sketch

Therefore, it follows that

I(Xn
1 ;Xn

2 ) (15)

≤I(Sn1 ;Sn2 ) +H(V K2 |Sn1 ) +H(V K1 |Sn2 ) (16)

≤I(Sn1 ;Sn2 ) +H(V K2 ) +H(V K1 ) (17)

≤I(Sn1 ;Sn2 ) + 2nC0. (18)

Combining (8) with (18) we have

nR ≤ nC1 + nC2 + 2nC0 − I(Xn
1 ;Xn

2 ) + nε. (19)

Finally, we use techniques in [Bidokhti-Kramer ’14] to single-letterize the
bound in (19) to obtain that

2R ≤C1 + C2 + 2C0 + I(X1, X2;Y |U)

+ I(X1;U |X2) + I(X2;U |X1) (20)

for every auxiliary channel p(u|x1, x2, y). Combining with the cut-set bound,
we finished the proof.
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A Lower Bound

Theorem [Zhao-Ding-Khisti ’15]

For diamond network with conferencing relays, rate R is achievable if for
some pmf p(u, x1, x2, y) = p(u, x1, x2)p(y|x1, x2) and U ∈ U with
|U| ≤ min{|X1||X2|+ 2, |Y|+ 4}, it satisfies that

R ≤ min



C0 + C2 + I(X1;Y |X2, U)

C0 + C1 + I(X2;Y |X1, U)

C1 + C2 − I(X1;X2|U)

I(X1, X2;Y )
1
2 (C1 + C2 + 2C0 − I(X1;X2|U)

+ I(X1, X2;Y |U)).

(21)

Proof sketch: Marton’s coding with rate-splitting. Codebook is taken from
[Bidokhti-Kramer ’14] and is added extra list of messages for the relays to
transmit to each other through conferencing links. Error analysis is also an
extension of those done in [Bidokhti-Kramer ’14].
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Symmetric Gaussian Diamond Channel (SGDC)

C1 = C2 = C and Gaussian MAC. The output of the Gaussian MAC is

Y = X1 +X2 + Z, (22)

where Z ∼ N (0, 1). Both X1 and X2 have average power constraint
1
n

∑n
i=1E[X2

j,i] ≤ P for j = 1, 2.
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Upper-Bounds on SGDC

Applying theorem 1 and techniques similar to [Kang-Liu ’11], we arrive at
the following results

Theorem [Zhao-Ding-Khisti ’15]

C
+

= max{max
ρ≤ρ∗

S1(ρ), max
ρ∗≤ρ≤1

S2(ρ)}. (23)

where

S1(ρ) = min



2C
1
2 log(1 + 2(1 + ρ)P )

C + C0 + 1
2 log(1 + (1− ρ2)P )

C + C0 + 1
4 log(1 + 2(1 + ρ)P )

− 1
2 log 1

1−ρ2

S2(ρ) = min


2C
1
2 log(1 + 2(1 + ρ)P )

C + C0 + 1
2 log(1 + (1− ρ2)P )

ρ∗ =

√
1 +

1

4P 2
−

1

2P
. (24)
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SGDC
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Minimum C0 required

Research question: we would like to use the conferencing links as ”helpers”
to allow the broadcast bitpipes to transmit independent messages and yet
have the MAC achieving full cooperative potential. What is the minimum
C0 required?

i.e. C0(C)
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Minimum C0 required

For C < 1
4 log(1 + 4P ), C0 is not possible

For C ≥ 1
2 log(1 + 4P ), C0 = 0

Interesting regime is C ∈ [ 14 log(1 + 4P ), 12 log(1 + 4P ))

Theorem [Zhao-Ding-Khisti ’15]

Given the capacity of the source-to-relay bit-pipe links
C ∈ [ 14 log(1 + 4P ), 12 log(1 + 4P )], the cut-set bound R ≤ 1

2 log(1 + 4P ) can
be achieved if and only if C0 ≥ 1

2 log(1 + 4P )− C.
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Proof Sketch

Achievability is obvious. For the converse, note that for (23), in the case of
1
4 log(1 + 4P ) ≤ C < 1

2 log(1 + 4P ), the constraint 2C for both S1(ρ) and
S2(ρ) , respectively, is inactive.
Now, in this regime, observe that

max
ρ≤ρ∗

S1(ρ) ≤ max
ρ≤ρ∗

1

2
log(1 + 2(1 + ρ)P )

<
1

2
log(1 + 4P ), (25)

thus we have C+ = 1
2 log(1 + 4P ) if and only if

maxρ∗≤ρ≤1 S2(ρ) = 1
2 log(1 + 4P ). Since for ρ∗ < ρ < 1 we have

S2(ρ) ≤ 1

2
log(1 + 2(1 + ρ)P ) <

1

2
log(1 + 4P ), (26)

maxρ∗≤ρ≤1 S2(ρ) = 1
2 log(1 + 4P ) is satisfied if and only if

S2(1) = 1
2 log(1 + 4P ), which implies

C + C0 ≥
1

2
log(1 + 4P ), (27)
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Result Not Trivial—Binary Adder Channel

We let Z = 0, C1 = C2 = C, input alphabet is X = {0, 1} and the output
alphabet is Y = {0, 1, 2}, with Y = X1 +X2.
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BAC

Results on bounds can only be obtained numerically, and they are shown
below for C = log(3)/2 = 0.79, which is half of the full cooperative potential
log(3) = 1.58.
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BAC

Fig. 23 shows that the cut-set bound 1.58 for C = 0.79 is achievable if
C0 ≥ 0.174 and only if C0 ≥ 0.025.

It can be observed that unlike the Gaussian case, the minimum C0

needed is much less than the difference between the cut-set bound 1.58
and C = 0.79, which is 0.79.

Why? (Long-story short)

For the Gaussian case, in order to obtain the optimal p(x1, x2)∗, we
need to have X1 = X2. Since we also need to form Markov chain
X1 ↔ U ↔ X2, U has to be picked as a deterministic function of X1 (or
X2). However, this is not true in general.

In BAC, for example, with p(u) = [12 ,
1
2 ],

p(x1|u) = p(x2|u) = [α, 1− α;β, 1− β] with α = 1
2 −

√
3
6 ,β = 1

2 +
√
3
6 ,

we have
∑
u∈U p(u, x1, x2) = [13 ,

1
6 ; 1

6 ,
1
3 ] and

I(X1;Y |X2, U) = I(X2;Y |X1, U) = 0.7440, 1
2I(X1, X2;Y |U) = 0.5774,

hence when C0 ≥ 0.2152, RCS of 1.5850 can be achieved given
C = 0.7925 = 1

2RCS .
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Effects of relay conferencing on a class of diamond networks are
examined

Tighter upper bound and a lower bound on its capacity is presented

There is no clever manipulation of conferencing links to achieve full
MAC cooperation with individual source-to-relay messages for Gaussian
MACs

However, this is not true in general as seen from Binary Adder MAC
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