Capacity Bounds for a Class of Diamond Networks with Conferencing Relays

David Ding

May 16, 2016
Joint work with Wanyao Zhao and Prof. Ashish Khisti, 2015

Table of Contents

1 System Setup

2 Capacity Bounds

3 Case Studies

4 Conclusion

System Setup

Channel Model

This is the general setup of a diamond channel:

Figure: Diamond network with relay conferencing

Channel Model Continued

The particular channel being studied has three parts:
1 The broadcasting portion

- Modelled by two noise-less bitpipes, each of capacities C_{1} and C_{2} from the source to relays 1 and 2 , respectively.
2 The conferencing portion
- Modelled by two identical noise-less bitpipes of capacity C_{0} from one relay to the other
3 The multiple-access portion
- General scenario considered: $P_{Y \mid X_{1}, X_{2}}$

We are interested in studying the capacity of this channel and look at some special cases of the MAC.

Problem Definition

- The source encoder maps message $W \in\left[1: 2^{n R}\right]$ onto S_{1}^{n} and S_{2}^{n} and transmits through the noiseless bit-pipes to relays 1 and 2, respectively, i.e.

$$
\begin{equation*}
S_{1}^{n}=f_{0,1}(W), \quad S_{2}^{n}=f_{0,2}(W) \tag{1}
\end{equation*}
$$

S_{1}^{n} and S_{2}^{n} are such that $H\left(S_{1}^{n}\right) \leq n C_{1}$ and $H\left(S_{2}^{n}\right) \leq n C_{2}$.
\square
for $k=1,2, \ldots, K$ and $V_{i, 0}=1$ for $i=1,2 . V_{i}^{K}$ satisfies the constraint $H\left(V_{i}^{K}\right) \leq n C_{0}$ for $i=1,2$.

- The source encoder maps message $W \in\left[1: 2^{n R}\right]$ onto S_{1}^{n} and S_{2}^{n} and transmits through the noiseless bit-pipes to relays 1 and 2 , respectively, i.e.

$$
\begin{equation*}
S_{1}^{n}=f_{0,1}(W), \quad S_{2}^{n}=f_{0,2}(W) \tag{1}
\end{equation*}
$$

S_{1}^{n} and S_{2}^{n} are such that $H\left(S_{1}^{n}\right) \leq n C_{1}$ and $H\left(S_{2}^{n}\right) \leq n C_{2}$.

- After receiving S_{i}^{n}, two relays can communicate through K rounds in a round-robin fashion. At round k, relay i sends $V_{i, k}$ to the other relay based on S_{i}^{n} and message from the other relay in previous rounds, i.e.

$$
\begin{equation*}
V_{1, k}=f_{1,2}\left(S_{1}^{n}, V_{2}^{k-1}\right), \quad V_{2, k}=f_{2,1}\left(S_{2}^{n}, V_{1}^{k-1}\right) \tag{2}
\end{equation*}
$$

for $k=1,2, \ldots, K$ and $V_{i, 0}=1$ for $i=1,2 . V_{i}^{K}$ satisfies the constraint $H\left(V_{i}^{K}\right) \leq n C_{0}$ for $i=1,2$.

- Then relay i maps its received signal S_{i}^{n} from the transmitter and $V_{\{1,2\} \backslash i}^{K}$ from the other relay to X_{i}^{n} as the input to the MAC for $i=1,2$, i.e.

$$
\begin{equation*}
X_{1}^{n}=f_{1,3}\left(S_{1}^{n}, V_{2}^{K}\right), \quad X_{2}^{n}=f_{2,3}\left(S_{2}^{n}, V_{1}^{K}\right) \tag{3}
\end{equation*}
$$

- The MAC is characterized by its input alphabet $\mathcal{X}_{1}, \mathcal{X}_{2}$, output
alphabet \mathcal{Y} and transition probability $p\left(y \mid x_{1}, x_{2}\right)$. The receiver decodes an estimate $\hat{W}=g\left(Y^{n}\right)$ of W

Problem Definition

- Then relay i maps its received signal S_{i}^{n} from the transmitter and $V_{\{1,2\} \backslash i}^{K}$ from the other relay to X_{i}^{n} as the input to the MAC for $i=1,2$, i.e.

$$
\begin{equation*}
X_{1}^{n}=f_{1,3}\left(S_{1}^{n}, V_{2}^{K}\right), \quad X_{2}^{n}=f_{2,3}\left(S_{2}^{n}, V_{1}^{K}\right) . \tag{3}
\end{equation*}
$$

- The MAC is characterized by its input alphabet $\mathcal{X}_{1}, \mathcal{X}_{2}$, output alphabet \mathcal{Y} and transition probability $p\left(y \mid x_{1}, x_{2}\right)$. The receiver decodes an estimate $\hat{W}=g\left(Y^{n}\right)$ of W.

- Then relay i maps its received signal S_{i}^{n} from the transmitter and $V_{\{1,2\} \backslash i}^{K}$ from the other relay to X_{i}^{n} as the input to the MAC for $i=1,2$, i.e.

$$
\begin{equation*}
X_{1}^{n}=f_{1,3}\left(S_{1}^{n}, V_{2}^{K}\right), \quad X_{2}^{n}=f_{2,3}\left(S_{2}^{n}, V_{1}^{K}\right) . \tag{3}
\end{equation*}
$$

- The MAC is characterized by its input alphabet $\mathcal{X}_{1}, \mathcal{X}_{2}$, output alphabet \mathcal{Y} and transition probability $p\left(y \mid x_{1}, x_{2}\right)$. The receiver decodes an estimate $\hat{W}=g\left(Y^{n}\right)$ of W.

Definition

The capacity of the diamond network considered is defined as the maximum R such that for any $\epsilon>0$ there exists $\left\{f_{i, 0}, f_{i,\{1,2\} \backslash i}, f_{i, 3}, g\right\}, i=1,2$ and n sufficiently large such that $\operatorname{Pr}(W \neq \hat{W}) \leq \epsilon$.

Capacity Bounds

Cutset Bound

The cut-set bound of the diamond channel is as follows:

$$
R \leq \max _{p\left(x_{1}, x_{2}\right)} \min \left\{\begin{array}{l}
C_{1}+C_{2} \tag{4}\\
I\left(X_{1}, X_{2} ; Y\right) \\
C_{1}+C_{0}+I\left(X_{2} ; Y \mid X_{1}\right) \\
C_{2}+C_{0}+I\left(X_{1} ; Y \mid X_{2}\right)
\end{array}\right.
$$

The cut-set bound does not fully capture the trade-off between sending independent messages at the encoder, represented by the $C_{1}+C_{2}$ term, and the full cooperation at the MAC, represented by the $I\left(X_{1}, X_{2} ; Y\right)$ term. A tighter upper bound can be derived.

Cutset Bound

The cut-set bound of the diamond channel is as follows:

$$
R \leq \max _{p\left(x_{1}, x_{2}\right)} \min \left\{\begin{array}{l}
C_{1}+C_{2} \tag{4}\\
I\left(X_{1}, X_{2} ; Y\right) \\
C_{1}+C_{0}+I\left(X_{2} ; Y \mid X_{1}\right) \\
C_{2}+C_{0}+I\left(X_{1} ; Y \mid X_{2}\right)
\end{array}\right.
$$

The cut-set bound does not fully capture the trade-off between sending independent messages at the encoder, represented by the $C_{1}+C_{2}$ term, and the full cooperation at the MAC, represented by the $I\left(X_{1}, X_{2} ; Y\right)$ term. A tighter upper bound can be derived.

Theorem [Zhao-Ding-Khisti '15]

An upper bound of the diamond network with conference is

$$
R \leq \max _{p\left(x_{1}, x_{2}\right)} \min _{p\left(u \mid x_{1}, x_{2}, y\right)} \beta,
$$

where

$$
\beta=\min \left\{\begin{array}{l}
C_{1}+C_{2} \tag{5}\\
I\left(X_{1}, X_{2} ; Y\right) \\
C_{1}+C_{0}+I\left(X_{2} ; Y \mid X_{1}\right) \\
C_{2}+C_{0}+I\left(X_{1} ; Y \mid X_{2}\right) \\
\frac{1}{2}\left(C_{1}+C_{2}+2 C_{0}+I\left(X_{1}, X_{2} ; Y \mid U\right)\right. \\
\left.\quad+I\left(X_{1} ; U \mid X_{2}\right)+I\left(X_{2} ; U \mid X_{1}\right)\right) .
\end{array}\right.
$$

with $|\mathcal{U}| \leq\left|\mathcal{X}_{1}\right|\left|\mathcal{X}_{2}\right||\mathcal{Y}|+2$.

Proof Sketch

Starting from Fano's inequality, we have

$$
\begin{align*}
n R & \leq I\left(W ; Y^{n}\right)+n \epsilon \tag{6}\\
& \ldots \tag{7}\\
& \leq n C_{1}+n C_{2}-I\left(S_{1}^{n} ; S_{2}^{n}\right)+n \epsilon
\end{align*}
$$

Proof Sketch

Starting from Fano's inequality, we have

$$
\begin{align*}
n R & \leq I\left(W ; Y^{n}\right)+n \epsilon \tag{6}\\
& \ldots \tag{7}\\
& \leq n C_{1}+n C_{2}-I\left(S_{1}^{n} ; S_{2}^{n}\right)+n \epsilon
\end{align*}
$$

- The $I\left(S_{1}^{n} ; S_{2}^{n}\right) \geq 0$ term captures the trade-off!

Proof Sketch

Starting from Fano's inequality, we have

$$
\begin{align*}
n R & \leq I\left(W ; Y^{n}\right)+n \epsilon \tag{6}\\
& \ldots \tag{7}\\
& \leq n C_{1}+n C_{2}-I\left(S_{1}^{n} ; S_{2}^{n}\right)+n \epsilon
\end{align*}
$$

- The $I\left(S_{1}^{n} ; S_{2}^{n}\right) \geq 0$ term captures the trade-off!

Observe: $V_{1}^{K}=f\left(S_{1}^{n}, V_{2}^{K-1}\right)$ and $V_{2}^{K-1}=f\left(S_{2}^{n}, V_{1}^{K-2}\right)$ Therefore, V_{1}^{K} is a function of both S_{1}^{n} and S_{2}^{n}. Same for V_{2}^{K}.

Proof Sketch

We need to find the relation between $I\left(S_{1}^{n} ; S_{2}^{n}\right)$ and $I\left(X_{1}^{n} ; X_{2}^{n}\right)$, as follows,

$$
\begin{align*}
& I\left(X_{1}^{n} ; X_{2}^{n}\right) \tag{9}\\
\leq & I\left(S_{1}^{n}, V_{2}^{K} ; S_{2}^{n}, V_{1}^{K}\right) \tag{10}\\
= & I\left(S_{1}^{n} ; S_{2}^{n}\right)+I\left(V_{2}^{K} ; S_{2}^{n} \mid S_{1}^{n}\right) \\
& +I\left(V_{1}^{K} ; S_{1}^{n} \mid S_{2}^{n}\right)+I\left(V_{1}^{K} ; V_{2}^{K} \mid S_{1}^{n}, S_{2}^{n}\right), \tag{11}
\end{align*}
$$

where (10) is due to the Markov chain $X_{1}^{n} \leftrightarrow\left(S_{1}^{n}, V_{2}^{K}\right) \leftrightarrow\left(S_{2}^{n}, V_{1}^{K}\right) \leftrightarrow X_{2}^{n}$. For the terms in (11),

$$
\begin{align*}
I\left(V_{1}^{K} ; S_{1}^{n} \mid S_{2}^{n}\right) & =H\left(V_{1}^{K} \mid S_{2}^{n}\right) \tag{12}\\
I\left(V_{2}^{K} ; S_{2}^{n} \mid S_{1}^{n}\right) & =H\left(V_{2}^{K} \mid S_{1}^{n}\right) \tag{13}\\
I\left(V_{1}^{K} ; V_{2}^{K} \mid S_{1}^{n}, S_{2}^{n}\right) & =0, \tag{14}
\end{align*}
$$

are true since V_{1}^{K} and V_{2}^{K} are both deterministic functions of $\left(S_{1}^{n}, S_{2}^{n}\right)$.

Proof Sketch

Therefore, it follows that

$$
\begin{align*}
& I\left(X_{1}^{n} ; X_{2}^{n}\right) \tag{15}\\
\leq & I\left(S_{1}^{n} ; S_{2}^{n}\right)+H\left(V_{2}^{K} \mid S_{1}^{n}\right)+H\left(V_{1}^{K} \mid S_{2}^{n}\right) \tag{16}\\
\leq & I\left(S_{1}^{n} ; S_{2}^{n}\right)+H\left(V_{2}^{K}\right)+H\left(V_{1}^{K}\right) \tag{17}\\
\leq & I\left(S_{1}^{n} ; S_{2}^{n}\right)+2 n C_{0} . \tag{18}
\end{align*}
$$

Combining (8) with (18) we have

$$
\begin{equation*}
n R \leq n C_{1}+n C_{2}+2 n C_{0}-I\left(X_{1}^{n} ; X_{2}^{n}\right)+n \epsilon . \tag{19}
\end{equation*}
$$

Finally, we use techniques in [Bidokhti-Kramer '14] to single-letterize the bound in (19) to obtain that

$$
\begin{align*}
2 R \leq & C_{1}+C_{2}+2 C_{0}+I\left(X_{1}, X_{2} ; Y \mid U\right) \\
& +I\left(X_{1} ; U \mid X_{2}\right)+I\left(X_{2} ; U \mid X_{1}\right) \tag{20}
\end{align*}
$$

for every auxiliary channel $p\left(u \mid x_{1}, x_{2}, y\right)$. Combining with the cut-set bound, we finished the proof.

A Lower Bound

Theorem [Zhao-Ding-Khisti '15]

For diamond network with conferencing relays, rate R is achievable if for some pmf $p\left(u, x_{1}, x_{2}, y\right)=p\left(u, x_{1}, x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)$ and $U \in \mathcal{U}$ with $|\mathcal{U}| \leq \min \left\{\left|\mathcal{X}_{1}\right|\left|\mathcal{X}_{2}\right|+2,|\mathcal{Y}|+4\right\}$, it satisfies that

$$
R \leq \min \left\{\begin{array}{l}
C_{0}+C_{2}+I\left(X_{1} ; Y \mid X_{2}, U\right) \tag{21}\\
C_{0}+C_{1}+I\left(X_{2} ; Y \mid X_{1}, U\right) \\
C_{1}+C_{2}-I\left(X_{1} ; X_{2} \mid U\right) \\
I\left(X_{1}, X_{2} ; Y\right) \\
\frac{1}{2}\left(C_{1}+C_{2}+2 C_{0}-I\left(X_{1} ; X_{2} \mid U\right)\right. \\
\left.\quad+I\left(X_{1}, X_{2} ; Y \mid U\right)\right) .
\end{array}\right.
$$

Proof sketch: Marton's coding with rate-splitting. Codebook is taken from [Bidokhti-Kramer '14] and is added extra list of messages for the relays to transmit to each other through conferencing links. Error analysis is also an extension of those done in [Bidokhti-Kramer '14].

Theorem [Zhao-Ding-Khisti '15]

For diamond network with conferencing relays, rate R is achievable if for some pmf $p\left(u, x_{1}, x_{2}, y\right)=p\left(u, x_{1}, x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)$ and $U \in \mathcal{U}$ with $|\mathcal{U}| \leq \min \left\{\left|\mathcal{X}_{1}\right|\left|\mathcal{X}_{2}\right|+2,|\mathcal{Y}|+4\right\}$, it satisfies that

$$
R \leq \min \left\{\begin{array}{l}
C_{0}+C_{2}+I\left(X_{1} ; Y \mid X_{2}, U\right) \tag{21}\\
C_{0}+C_{1}+I\left(X_{2} ; Y \mid X_{1}, U\right) \\
C_{1}+C_{2}-I\left(X_{1} ; X_{2} \mid U\right) \\
I\left(X_{1}, X_{2} ; Y\right) \\
\frac{1}{2}\left(C_{1}+C_{2}+2 C_{0}-I\left(X_{1} ; X_{2} \mid U\right)\right. \\
\left.\quad+I\left(X_{1}, X_{2} ; Y \mid U\right)\right) .
\end{array}\right.
$$

Proof sketch: Marton's coding with rate-splitting. Codebook is taken from [Bidokhti-Kramer '14] and is added extra list of messages for the relays to transmit to each other through conferencing links. Error analysis is also an extension of those done in [Bidokhti-Kramer '14].

Case Studies

Symmetric Gaussian Diamond Channel (SGDC) Toronto

$C_{1}=C_{2}=C$ and Gaussian MAC. The output of the Gaussian MAC is

$$
\begin{equation*}
Y=X_{1}+X_{2}+Z, \tag{22}
\end{equation*}
$$

where $Z \sim \mathcal{N}(0,1)$. Both X_{1} and X_{2} have average power constraint $\frac{1}{n} \sum_{i=1}^{n} E\left[X_{j, i}^{2}\right] \leq P$ for $j=1,2$.

Upper-Bounds on SGDC

Applying theorem 1 and techniques similar to [Kang-Liu '11], we arrive at the following results

Theorem [Zhao-Ding-Khisti ' 15]

$$
\begin{equation*}
C^{+}=\max \left\{\max _{\rho \leq \rho *} S_{1}(\rho), \max _{\rho * \leq \rho \leq 1} S_{2}(\rho)\right\} . \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
S_{1}(\rho) & =\min \left\{\begin{array}{l}
2 C \\
\frac{1}{2} \log (1+2(1+\rho) P) \\
C+C_{0}+\frac{1}{2} \log \left(1+\left(1-\rho^{2}\right) P\right) \\
C+C_{0}+\frac{1}{4} \log (1+2(1+\rho) P) \\
-\frac{1}{2} \log \frac{1}{1-\rho^{2}}
\end{array}\right. \\
S_{2}(\rho) & =\min \left\{\begin{array}{l}
2 C \\
\frac{1}{2} \log (1+2(1+\rho) P) \\
C+C_{0}+\frac{1}{2} \log \left(1+\left(1-\rho^{2}\right) P\right)
\end{array}\right. \\
\rho * & =\sqrt{1+\frac{1}{4 P^{2}}-\frac{1}{2 P} .} \tag{24}
\end{align*}
$$

SGDC

Minimum C_{0} REQuired

Research question: we would like to use the conferencing links as "helpers" to allow the broadcast bitpipes to transmit independent messages and yet have the MAC achieving full cooperative potential. What is the minimum C_{0} required?

i.e. $C_{0}(C)$

Minimum C_{0} REQUIRED

- For $C<\frac{1}{4} \log (1+4 P), C_{0}$ is not possible
- For $C \geq \frac{1}{2} \log (1+4 P), C_{0}=0$

Interesting regime is $C \in\left[\frac{1}{4} \log (1+4 P), \frac{1}{2} \log (1+4 P)\right)$

Theorem [Zhao-Ding-Khisti '15]

Given the capacity of the source-to-relay bit-pipe links
$C \in\left[\frac{1}{4} \log (1+4 P), \frac{1}{2} \log (1+4 P)\right]$, the cut-set bound $R \leq \frac{1}{2} \log (1+4 P)$ can be achieved if and only if $C_{0} \geq \frac{1}{2} \log (1+4 P)-C$.

Proof Sketch

Achievability is obvious. For the converse, note that for (23), in the case of $\frac{1}{4} \log (1+4 P) \leq C<\frac{1}{2} \log (1+4 P)$, the constraint $2 C$ for both $S_{1}(\rho)$ and $S_{2}(\rho)$, respectively, is inactive. Now, in this regime, observe that

$$
\begin{align*}
\max _{\rho \leq \rho *} S_{1}(\rho) & \leq \max _{\rho \leq \rho *} \frac{1}{2} \log (1+2(1+\rho) P) \\
& <\frac{1}{2} \log (1+4 P), \tag{25}
\end{align*}
$$

thus we have $C^{+}=\frac{1}{2} \log (1+4 P)$ if and only if $\max _{\rho * \leq \rho \leq 1} S_{2}(\rho)=\frac{1}{2} \log (1+4 P)$. Since for $\rho *<\rho<1$ we have

$$
\begin{equation*}
S_{2}(\rho) \leq \frac{1}{2} \log (1+2(1+\rho) P)<\frac{1}{2} \log (1+4 P) \tag{26}
\end{equation*}
$$

$\max _{\rho * \leq \rho \leq 1} S_{2}(\rho)=\frac{1}{2} \log (1+4 P)$ is satisfied if and only if $S_{2}(1)=\frac{1}{2} \log (1+4 P)$, which implies

$$
\begin{equation*}
C+C_{0} \geq \frac{1}{2} \log (1+4 P) \tag{27}
\end{equation*}
$$

We let $\mathcal{Z}=0, C_{1}=C_{2}=C$, input alphabet is $\mathcal{X}=\{0,1\}$ and the output alphabet is $\mathcal{Y}=\{0,1,2\}$, with $Y=X_{1}+X_{2}$.

Results on bounds can only be obtained numerically, and they are shown below for $C=\log (3) / 2=0.79$, which is half of the full cooperative potential $\log (3)=1.58$.

- Fig. 23 shows that the cut-set bound 1.58 for $C=0.79$ is achievable if $C_{0} \geq 0.174$ and only if $C_{0} \geq 0.025$.
- It can be observed that unlike the Gaussian case, the minimum C_{0} needed is much less than the difference between the cut-set bound 1.58 and $C=0.79$, which is 0.79 .
Why? (Long-story short)
- For the Gaussian case, in order to obtain the optimal $p\left(x_{1}, x_{2}\right)^{*}$, we need to have $X_{1}=X_{2}$. Since we also need to form Markov chain $X_{1} \leftrightarrow U \leftrightarrow X_{2}, U$ has to be picked as a deterministic function of X_{1} (or $\left.X_{2}\right)$. However, this is not true in general.
- In BAC, for example, with $p(u)=\left[\frac{1}{2}, \frac{1}{2}\right]$,
$p\left(x_{1} \mid u\right)=p\left(x_{2} \mid u\right)=[\alpha, 1-\alpha ; \beta, 1-\beta]$ with $\alpha=\frac{1}{2}-\frac{\sqrt{3}}{6}, \beta=\frac{1}{2}+\frac{\sqrt{3}}{6}$, we have $\sum_{u \in \mathcal{U}} p\left(u, x_{1}, x_{2}\right)=\left[\frac{1}{3}, \frac{1}{6} ; \frac{1}{6}, \frac{1}{3}\right]$ and $I\left(X_{1} ; Y \mid X_{2}, U\right)=I\left(X_{2} ; Y \mid X_{1}, U\right)=0.7440, \frac{1}{2} I\left(X_{1}, X_{2} ; Y \mid U\right)=0.5774$, hence when $C_{0} \geq 0.2152, R_{C S}$ of 1.5850 can be achieved given $C=0.7925=\frac{1}{2} R_{C S}$.

Conclusion

- Effects of relay conferencing on a class of diamond networks are examined
- Tighter upper bound and a lower bound on its capacity is presented
- There is no clever manipulation of conferencing links to achieve full MAC cooperation with individual source-to-relay messages for Gaussian MACs
- However, this is not true in general as seen from Binary Adder MAC

