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Abstract

This work proposes a joint base station (BS) association and
power control scheme that encourages the turning-off of the
BSs at the off-peak time.

Our contributions include:

• A novel flexible BS association and activation paradigm;

• An efficient algorithm based on the gradient projection
method and the proximal gradient method.

Introduction

The traditional max-SINR association is suboptimal in HetNet
because it does not account for load balancing between large
cells and small cells.

A common solution used in practice is cell-range expansion that
can be interpreted as a dual optimization; see [1] and [2].

But this scheme is based on the assumption that each user is
associated with only one BS and all BSs transmit at flat power
spectral density (PSD).

We propose a flexible framework for joint BS association and
power control by assuming that
1 users can be associated with possibly multiple BSs over

multiple frequency bands;

2 BSs can transmit at varying PSDs across the frequencies;

3 BSs can be deactivated for the power saving purpose.

Resource Allocation Model

Consider a downlink HetNet with K users and L BSs. The total
frequency band W is divided into N equal bands. Use (ℓ, n) to
index the band resources, for ℓ = [1 : L] and n = [1 : N ]. The
spectral efficiency of user k in band (ℓ, n) is
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where gnkℓ is the channel magnitude, pnℓ is the transmit power,
and σ2 is the background noise power.

Each user k can be associated with an arbitrary set of (ℓ, n)’s.
Multiple users associated with the same (ℓ, n) are served via
time-division multiplexing. Then, the total transmission rate of
user k is
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xnkℓr
n
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where 0 ≤ xnkℓ ≤ 1 represents the fraction of (ℓ, n) allocated to
user k.

Joint BS Association and Activation

There are two types of power consumption:

• Transmit power pnℓ ;

• On-power ψℓ.

The total power consumption at BS ℓ is

Qℓ(pℓ) = eTNpℓ + ψℓ ‖pℓ‖0 (3)

where pℓ = [p1
ℓ, . . . , p

N
ℓ ]T .

The objective is to maximize a network utility, chosen here as a
trade-off between the power consumption and the proportionally
fair utility:

max
X,P
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Qℓ (pℓ) (4a)

s.t. 0 ≤ pℓ ≤ p̄ℓ, ∀ℓ (4b)

XneL ≤ eK, ∀n (4c)

(Xn)T eK ≤ eL, ∀n (4d)

Xn ≥ 0, ∀n (4e)

where λ ≥ 0 is a given trade-off factor and Xn is the set {xnkℓ}(k,ℓ)

for n = 1, 2, . . . , N .

Iterative Reweighting

The ℓ0-norm term in Qℓ(pℓ) is numerically difficult to deal with.
We propose to approximate the original problem by the following
weighted ℓ2/ℓ1 problem:

max
X,P
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s.t. (4b)–(4e) (5b)

where

f(X,P) =
K
∑

k=1

log(Rk) − λeTLPeN (6)

and {wℓ} are some iteratively updated weights. This leads to
the following algorithm:

between all users and all BSs.

Since multiple users associated with the same BS and in the

same band need to be served with time-division multiplexing,
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The objective is to maximize a

network utility, chosen here as a tradeoff between the BS

power consumption and the proportionally fair utility defined

Algorithm 1: An Iteratively Reweighting Algorithm

for Solving Problem (4)

Step 1. Choose a positive sequence {τ(t)} . Set t = 0 and
wℓ(0) = 1 for all ℓ = 1, 2, . . . , L.

Step 2. Solve problem (5) with wℓ = wℓ(t), ℓ = 1, 2, . . . , L
for its solution P(t) and X(t).

Step 3. Update the weights by

wℓ(t+ 1) =
1

||pℓ(t)||2 + τ(t)
, ℓ = 1, 2, . . . , L, (7)

set t = t+ 1, and go to Step 2.

We remark that as shown in [16], (7) is an efficient and
Remark: We approximate ‖pℓ‖0 by ‖pℓ‖2 rather than ‖pℓ‖1 in
the new problem (5) in order to induce group sparsity. The
intuition is that ℓ2 encourages setting the entire vector pℓ to zero
(i.e., turning off BS ℓ), whereas ℓ1 encourages setting a subset of
entries to zero.

Gradient Projection for Optimizing X

To solve problem (5), we first consider optimizing X assuming
that P is fixed to P(s). This is a convex problem with linear
constraints. Apply the gradient update:

X̃n(s) = Xn(s) + αn(s)∇Xnf (X(s),P(s)) (8)

where αn(s) is some appropriately chosen step size. Then, the
optimal X can be obtained from projection:

min
X
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2
‖Xn − X̃n(s)‖2

F (9a)

s.t. (4c)–(4e). (9b)

We propose an efficient approach by extending the dualBB algo-
rithm in [3]. The Lagrangian dual of (9) is

min
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2
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F + eTKyn + eTLzn (10a)

s.t. yn ≤ 0, zn ≤ 0 (10b)

where Θs(y
n, zn) = max{X̃n(s)+yneTL+eK (zn)T ,0}. The new

problem can be efficiently solved through the projection onto the
nonpositive orthant. After solving (10), we recover

Xn(s + 1) = Θs(y
n, zn). (11)

Proximal Gradient for Optimizing P

We further consider optimizing P with X fixed to X(s+ 1), up-
dated by the above gradient projection method. Because ‖pℓ‖0

is nonsmooth, the gradient method does not work. In this pa-
per, we propose to use the proximal gradient method [4]. First,
compute the gradient update:

p̃ℓ(s + 1) = pℓ(s) + βℓ(s + 1)∇pℓf (X(s + 1),P(s)) (12)

where βℓ(s + 1) is some appropriately chosen step size.

The proximal gradient method further updates pℓ by solving

min
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2
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2 + tℓ(s + 1) ‖pℓ‖2 (13)

where
tℓ(s + 1) = λψℓwℓβℓ(s + 1). (14)

This problem has a closed-form solution:

p̂ℓ(s + 1) = max
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, 0

}

p̃ℓ(s + 1). (15)

Block Coordinate Ascent on X and P

denotes the Frobenius norm. The projection

step is also a convex optimization problem, but instead of

solving it directly, we show that solving its Lagrangian dual

be the Lagrange multipliers

respectively. The Lagrangian dual of

(10a)

(10b)

Algorithm 2: A Block Coordinate Gradient Ascent

Algorithm for Solving Problem (5)

Step 1. Choose an initial point (X(0),P(0)) . Set s = 0.

Step 2. Use the gradient projection method as in (8)–(11)

to optimize X for fixed P.

Step 3. Use the proximal gradient method as in (12)–(15)

to optimize P for fixed X. Set s = s+1 and go to Step 2.

Simulation Results

Network topology 7 cells; 9 users, 1 macro-BS, and 3 pico-BS per cell

Channel bandwidth 10MHz divided into 16 equal bands

Max transmit PSD -27dBm/Hz (macro-BS); -47dBm/Hz (pico-BS)

On-power 1450W (macro-BS); 21.32W (pico-BS)
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Figure 1: Rate CDFs when λ = 0.
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Figure 2: Greedy vs. Algorithm 1 for BS turning-off.

Conclusion

• Flexibilities of varying PSD across frequencies and
multiple-BS association benefit the low-rate users.

• The proposed algorithm enables effective balancing
between throughput and power consumption.
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