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Background

Motivation

Consider a downlink HetNet where macro and pico BSs coexist.

Macro has much higher Tx power & on-power than pico.

Central questions in the network design:

Load balancing between macro and pico

Fair resource allocation within the cell

Cross-cell interference control

Power saving by BS turnoff

This paper: A system-level optimization approach for the entire network.
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Background

Flexible BS Association

Most current works [Ye et al.,’13] [Shen-Yu,’14] focus on single-BS

association, i.e., the association of each user is fixed at one BS.

We propose a more flexible policy for BS association:

User-BS association can be different across the frequency bands.

A user can be associated with multiple BSs across different bands.

We optimize xn

kℓ: the fraction of time BS ℓ serves user k in band n.

Our work further introduces power saving in the system design.
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Problem

Problem Formulation

Per-link rate (between user k and BS ℓ in band n):
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Per-user rate:

Rk =

L
∑

ℓ=1

N
∑

n=1

xn

kℓr
n

kℓ, k = 1, 2, . . . ,K .

Each BS ℓ has a power consumption (Tx power plus on-power):

Qℓ(pℓ) = eT

N
pℓ + ψℓ ‖pℓ‖0

where ψℓ is on-power, pℓ = (p1
ℓ , . . . , p

N

ℓ ) the Tx power across bands.
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Problem

Problem Formulation (cont.)

Consider maximizing log-utility and minimizing power jointly (given λ ≥ 0):

max
X,P

K
∑

k=1

log (Rk) − λ

L
∑

ℓ=1

Qℓ (pℓ) (1a)

s.t. 0 ≤ pℓ ≤ p̄ℓ, ℓ = 1, 2, . . . ,L (1b)

XneL ≤ eK , n = 1, 2, . . . ,N (1c)

(Xn)
T

eK ≤ eL, n = 1, 2, . . . ,N (1d)

Xn ≥ 0, n = 1, 2, . . . ,N (1e)

Constraints:

(1b): Tx power constraint
(1c): Total fraction a user is served from all BSs in one band ≤ 1.
(1d): Total fraction each BS allocates to all its users in one band ≤ 1.
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Approach

Iterative Reweighting

It is difficult to optimize the ℓ0-norm term in Qℓ directly.

We propose to approximate ℓ0-norm as ℓ2-norm via iterative reweighting,
i.e., ‖pℓ‖0 ≈ wℓ‖pℓ‖2, where wℓ(t + 1) = 1

‖pℓ(t)‖2+τ(t) .

Intuition: If some pℓ is small, we raise its wℓ to encourage setting it to 0.

This leads us to a new problem objective: max f (X,P) − h(P), which is
composed of the smooth part

f (X,P) =

K
∑

k=1

log(Rk) − λeT

L PeN

and the non-smooth part

h(P) = λ

L
∑

ℓ=1

ψℓwℓ||pℓ||2.
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Approach

Gradient Projection for Updating X

We first consider optimizing X alone with P held fixed, that is

max
X

∑

k

log





∑

ℓ,n

xn

kℓr
n

kℓ



 (2a)

s.t. XneL ≤ eK , n = 1, 2, . . . ,N (2b)

(Xn)T
eK ≤ eL, n = 1, 2, . . . ,N (2c)

Xn ≥ 0, n = 1, 2, . . . ,N . (2d)

This problem is convex!

To attain the optimum, we iteratively update X to X̃ in the gradient
direction, then project X̃ to the constraint: i.e., minXn

1
2 ‖Xn − X̃‖2

2 s.t.
(2b)-(2d).

The projection can be done more easily in the dual Lagrangian domain.
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Approach

Projection in the Lagrangian Dual Domain

The Lagrangian function is (where yn and zn are dual variables)

L(Xn ,yn, zn) =
1

2
‖Xn − X̃n‖2

2 + (XneL − eK)T yn + ((Xn)T eK − eL)T zn

=
1

2
‖Xn‖2

2 − tr(Xn(X̃n)T ) + eT

L (Xn)Tyn + eT

KXnzn

− eT

Kyn − eT

L zn + const(X̃n)

Find (Xn)∗ = X̃n − yneT

L
− eK (zn)T ; substitute (Xn)∗ back in L yields

min
Xn

L = −
1

2
‖X̃n − yneT

L
− eK (zn)T‖2

2 − eT

K
yn − eT

L
zn + const(X̃n)

Thus, the dual problem maxyn≥0,zn≥0 minXn L is equivalent to

min
yn≥0,zn≥0

1

2
‖X̃n − yneT

L − eK (zn)T‖2
2 + eT

Kyn + eT

L zn

Solving this problem is more computationally efficient than the direct

projection because its constraints are much easier!
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Approach

Proximal Gradient for Updating P

For fixed X, the optimization of P is

max
P

f (P) − h(P) (3a)

s.t. 0 ≤ pℓ ≤ p̄ℓ, ℓ = 1, 2. . . . ,L. (3b)

Recall that function h is non-smooth, so gradient does not work here.

We follow a proximal gradient approach [Parikh-Boyd,’14] by first updating
P by gradient step with respect to the smooth part f only:

p̃ℓ = pℓ + βℓ∇pℓ
f , ℓ = 1, . . . ,L.

We then further update P to the proximal projection of P̃:

pnew
ℓ = arg min

uℓ

tℓh(uℓ) +
1

2
‖uℓ − p̃ℓ‖

2
2.

Intuition: The gradient of the smooth part p̃ℓ does not account for h(P).
The proximal gradient step adds a 1

2 ‖uℓ − p̃ℓ‖
2
2 term to min of h(P).
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Approach

Proximal Gradient for Updating P (cont.)

A nice feature of our problem is that it has closed-form proximal projection!

We solve minu t‖u‖2 + 1
2 ‖u − p̃‖2

2. By setting its subgradient to 0, we get:
(t/‖u‖2 + 1)u = p̃, so u∗ and p̃ are of the same direction, i.e., u∗ = λp̃,
λ ≥ 0.

We then consider minλ tλ‖p̃‖2 + (λ−1)2

2 ‖p̃‖2
2. Scalar variable λ can be

optimally determined as λ∗ = [1 − t/‖p̃‖2]+. More specifically,

pnew
ℓ = max

{

1 −
tℓ

‖p̃ℓ‖2

, 0

}

p̃ℓ.

In summary, we iteratively update X by gradient and update P by proximal.
Convergence is guaranteed by proper step size (e.g., by backtracking).

Shen, Liu, Ding, and Yu (UofT, CAS) Flexible BS Association and Activation July 2017 10 / 15



Approach

Benchmark

We introduce a common greedy heuristic for comparison purpose.

Greedily turn off one BS at a time; fix the on-off pattern (so the non-smooth
part h can be ignored) and then optimize X and P by gradient.

Drawbacks:

Greedy can turn off (at most) one BS at each iteration.
How BSs are ordered in the sequence of greedy test is critical to the
performance; but it is hard to decide the sequence in practice.
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Simulation

Simulation Model

7 wrapped-around cells

1 macro BS and 3 pico BSs per cell

9 users uniformly distributed per cell

Total bandwidth of 10MHz dived into 4 equal bands

Max Tx power spectrum density: macro is -27dBm/Hz, pico is -47dBm/Hz

ON-power: macro is 1450W, pico is 21.32W
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Simulation

Rate CDF: Single-BS vs. Multiple-BS Association
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Simulation

BS Turning-Off: Greedy vs. Proposed Method
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Conclusion

Conclusion

We propose a novel multiple-band multiple-BS association, which is more
flexible than the conventional single-BS association.

We formulate a novel utility-minus-power problem to take both network
throughput and power consumption into account.

We propose a gradient projection to optimize the time-sharing variable X.

We apply iterative reweighting and proximal gradient to optimize the power
variable P in its sparse and non-differentiable objective function .

Numerical results show that the proposed method enables effective
balancing between network throughput and power consumption.
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