Flexible Multiple Base Station Association and Activation for Downlink Heterogeneous Networks

Kaiming Shen ${ }^{1}$, Ya-Feng Liu ${ }^{2}$, David Y. Ding ${ }^{1}$, and Wei Yu ${ }^{1}$
${ }^{1}$ Electrical and Computer Engineering Department University of Toronto
${ }^{2}$ Institute of Computational Mathematics and Scientific/Enginnering Computing Chinese Academy of Sciences

July 2017

Motivation

- Consider a downlink HetNet where macro and pico BSs coexist.
- Macro has much higher Tx power \& on-power than pico.
- Central questions in the network design:
- Load balancing between macro and pico
- Fair resource allocation within the cell
- Cross-cell interference control
- Power saving by BS turnoff
- This paper: A system-level optimization approach for the entire network.

Flexible BS Association

- Most current works [Ye et al.,'13] [Shen-Yu,'14] focus on single-BS association, i.e., the association of each user is fixed at one BS.
- We propose a more flexible policy for BS association:
- User-BS association can be different across the frequency bands.
- A user can be associated with multiple BSs across different bands.
- We optimize $x_{k \ell}^{n}$: the fraction of time $\mathrm{BS} \ell$ serves user k in band n.
- Our work further introduces power saving in the system design.

Problem Formulation

- Per-link rate (between user k and $\mathrm{BS} \ell$ in band n):

$$
r_{k \ell}^{n}=\frac{W}{N} \log \left(1+\frac{g_{k \ell}^{n} p_{\ell}^{n}}{\sigma^{2}+\sum_{\ell^{\prime} \neq \ell} g_{k \ell^{\prime}}^{n} p_{\ell^{\prime}}^{n}}\right) .
$$

- Per-user rate:

$$
R_{k}=\sum_{\ell=1}^{L} \sum_{n=1}^{N} x_{k \ell}^{n} r_{k \ell}^{n}, k=1,2, \ldots, K .
$$

- Each BS ℓ has a power consumption (Tx power plus on-power):

$$
Q_{\ell}\left(\mathbf{p}_{\ell}\right)=\mathbf{e}_{N}^{T} \mathbf{p}_{\ell}+\psi_{\ell}\left\|\mathbf{p}_{\ell}\right\|_{0}
$$

where ψ_{ℓ} is on-power, $\mathbf{p}_{\ell}=\left(p_{\ell}^{1}, \ldots, p_{\ell}^{N}\right)$ the $\mathrm{T} \times$ power across bands.

Problem Formulation (cont.)

- Consider maximizing log-utility and minimizing power jointly (given $\lambda \geq 0$):

$$
\begin{align*}
\max _{\mathbf{X}, \mathbf{P}} & \sum_{k=1}^{K} \log \left(R_{k}\right)-\lambda \sum_{\ell=1}^{L} Q_{\ell}\left(\mathbf{p}_{\ell}\right) \tag{1a}\\
\text { s.t. } & \mathbf{0} \leq \mathbf{p}_{\ell} \leq \overline{\mathbf{p}}_{\ell}, \ell=1,2, \ldots, L \tag{1b}\\
& \mathbf{X}^{n} \mathbf{e}_{L} \leq \mathbf{e}_{K}, n=1,2, \ldots, N \tag{1c}\\
& \left(\mathbf{X}^{n}\right)^{T} \mathbf{e}_{K} \leq \mathbf{e}_{L}, n=1,2, \ldots, N \tag{1d}\\
& \mathbf{X}^{n} \geq \mathbf{0}, n=1,2, \ldots, N \tag{1e}
\end{align*}
$$

- Constraints:
- (1b): Tx power constraint
- (1c): Total fraction a user is served from all BSs in one band ≤ 1.
- (1d): Total fraction each BS allocates to all its users in one band ≤ 1.

Iterative Reweighting

- It is difficult to optimize the ℓ_{0}-norm term in Q_{ℓ} directly.
- We propose to approximate ℓ_{0}-norm as ℓ_{2}-norm via iterative reweighting, i.e., $\left\|\mathbf{p}_{\ell}\right\|_{0} \approx w_{\ell}\left\|\mathbf{p}_{\ell}\right\|_{2}$, where $w_{\ell}(t+1)=\frac{1}{\left\|\mathbf{p}_{\ell}(t)\right\|_{2}+\tau(t)}$. Intuition: If some \mathbf{p}_{ℓ} is small, we raise its w_{ℓ} to encourage setting it to $\mathbf{0}$.
- This leads us to a new problem objective: $\max f(\mathbf{X}, \mathbf{P})-h(\mathbf{P})$, which is composed of the smooth part

$$
f(\mathbf{X}, \mathbf{P})=\sum_{k=1}^{K} \log \left(R_{k}\right)-\lambda \mathbf{e}_{L}^{T} \mathbf{P} \mathbf{e}_{N}
$$

and the non-smooth part

$$
h(\mathbf{P})=\lambda \sum_{\ell=1}^{L} \psi_{\ell} w_{\ell}\left\|\mathbf{p}_{\ell}\right\|_{2}
$$

Gradient Projection for Updating X

- We first consider optimizing \mathbf{X} alone with \mathbf{P} held fixed, that is

$$
\begin{array}{cl}
\max _{\mathbf{X}} & \sum_{k} \log \left(\sum_{\ell, n} x_{k \ell}^{n} r_{k \ell}^{n}\right) \\
\text { s.t. } & \mathbf{X}^{n} \mathbf{e}_{L} \leq \mathbf{e}_{K}, n=1,2, \ldots, N \\
& \left(\mathbf{X}^{n}\right)^{T} \mathbf{e}_{K} \leq \mathbf{e}_{L}, n=1,2, \ldots, N \\
& \mathbf{X}^{n} \geq \mathbf{0}, n=1,2, \ldots, N . \tag{2d}
\end{array}
$$

This problem is convex!

- To attain the optimum, we iteratively update \mathbf{X} to $\tilde{\mathbf{X}}$ in the gradient direction, then project $\tilde{\mathbf{X}}$ to the constraint: i.e., $\min _{\mathbf{X}^{n}} \frac{1}{2}\left\|\mathbf{X}^{n}-\tilde{\mathbf{X}}\right\|_{2}^{2}$ s.t. (2b)-(2d).
- The projection can be done more easily in the dual Lagrangian domain.

Projection in the Lagrangian Dual Domain

- The Lagrangian function is (where \mathbf{y}^{n} and \mathbf{z}^{n} are dual variables)

$$
\begin{aligned}
\mathcal{L}\left(\mathbf{X}^{n}, \mathbf{y}^{n}, \mathbf{z}^{n}\right)= & \frac{1}{2}\left\|\mathbf{X}^{n}-\tilde{\mathbf{X}}^{n}\right\|_{2}^{2}+\left(\mathbf{X}^{n} \mathbf{e}_{L}-\mathbf{e}_{K}\right)^{T} \mathbf{y}^{n}+\left(\left(\mathbf{X}^{n}\right)^{T} \mathbf{e}_{K}-\mathbf{e}_{L}\right)^{T} \mathbf{z}^{n} \\
= & \frac{1}{2}\left\|\mathbf{X}^{n}\right\|_{2}^{2}-\operatorname{tr}\left(\mathbf{X}^{n}\left(\tilde{\mathbf{X}}^{n}\right)^{T}\right)+\mathbf{e}_{L}^{T}\left(\mathbf{X}^{n}\right)^{T} \mathbf{y}^{n}+\mathbf{e}_{K}^{T} \mathbf{X}^{n} \mathbf{z}^{n} \\
& -\mathbf{e}_{K}^{T} \mathbf{y}^{n}-\mathbf{e}_{L}^{T} \mathbf{z}^{n}+\operatorname{const}\left(\tilde{\mathbf{X}}^{n}\right)
\end{aligned}
$$

- Find $\left(\mathbf{X}^{n}\right)^{*}=\tilde{\mathbf{X}}^{n}-\mathbf{y}^{n} \mathbf{e}_{L}^{T}-\mathbf{e}_{K}\left(\mathbf{z}^{n}\right)^{T}$; substitute $\left(\mathbf{X}^{n}\right)^{*}$ back in \mathcal{L} yields

$$
\min _{\mathbf{X}^{n}} \mathcal{L}=-\frac{1}{2}\left\|\tilde{\mathbf{X}}^{n}-\mathbf{y}^{n} \mathbf{e}_{L}^{T}-\mathbf{e}_{K}\left(\mathbf{z}^{n}\right)^{T}\right\|_{2}^{2}-\mathbf{e}_{K}^{T} \mathbf{y}^{n}-\mathbf{e}_{L}^{T} \mathbf{z}^{n}+\operatorname{const}\left(\tilde{\mathbf{X}}^{n}\right)
$$

- Thus, the dual problem $\max _{\mathbf{y}^{n} \geq \mathbf{0}, \mathbf{z}^{n} \geq \mathbf{0}} \min _{\mathbf{X}^{n}} \mathcal{L}$ is equivalent to

$$
\min _{\mathbf{y}^{n} \geq \mathbf{0}, \mathbf{z}^{n} \geq \mathbf{0}} \frac{1}{2}\left\|\tilde{\mathbf{X}}^{n}-\mathbf{y}^{n} \mathbf{e}_{L}^{T}-\mathbf{e}_{K}\left(\mathbf{z}^{n}\right)^{T}\right\|_{2}^{2}+\mathbf{e}_{K}^{T} \mathbf{y}^{n}+\mathbf{e}_{L}^{T} \mathbf{z}^{n}
$$

Solving this problem is more computationally efficient than the direct projection because its constraints are much easier!

Proximal Gradient for Updating \mathbf{P}

- For fixed \mathbf{X}, the optimization of \mathbf{P} is

$$
\begin{array}{cl}
\max _{\mathbf{P}} & f(\mathbf{P})-h(\mathbf{P}) \\
\text { s.t. } & \mathbf{0} \leq \mathbf{p}_{\ell} \leq \overline{\mathbf{p}}_{\ell}, \ell=1,2 \ldots, L . \tag{3b}
\end{array}
$$

Recall that function h is non-smooth, so gradient does not work here.

- We follow a proximal gradient approach [Parikh-Boyd,'14] by first updating \mathbf{P} by gradient step with respect to the smooth part f only:

$$
\tilde{\mathbf{p}}_{\ell}=\mathbf{p}_{\ell}+\beta_{\ell} \nabla_{\mathbf{p}_{\ell}} f, \ell=1, \ldots, L
$$

We then further update \mathbf{P} to the proximal projection of $\tilde{\mathbf{P}}$:

$$
\mathbf{p}_{\ell}^{\text {new }}=\arg \min _{\mathbf{u}_{\ell}} t_{\ell} h\left(\mathbf{u}_{\ell}\right)+\frac{1}{2}\left\|\mathbf{u}_{\ell}-\tilde{\mathbf{p}}_{\ell}\right\|_{2}^{2}
$$

- Intuition: The gradient of the smooth part $\tilde{\mathbf{p}}_{\ell}$ does not account for $h(\mathbf{P})$.

The proximal gradient step adds a $\frac{1}{2}\left\|\mathbf{u}_{\ell}-\tilde{\mathbf{p}}_{\ell}\right\|_{2}^{2}$ term to min of $h(\mathbf{P})$.

Proximal Gradient for Updating P (cont.)

- A nice feature of our problem is that it has closed-form proximal projection!
- We solve $\min _{\mathbf{u}} t\|\mathbf{u}\|_{2}+\frac{1}{2}\|\mathbf{u}-\tilde{\mathbf{p}}\|_{2}^{2}$. By setting its subgradient to $\mathbf{0}$, we get: $\left(t /\|\mathbf{u}\|_{2}+1\right) \mathbf{u}=\tilde{\mathbf{p}}$, so \mathbf{u}^{*} and $\tilde{\mathbf{p}}$ are of the same direction, i.e., $\mathbf{u}^{*}=\lambda \tilde{\mathbf{p}}$, $\lambda \geq 0$.
- We then consider $\min _{\lambda} t \lambda\|\tilde{\mathbf{p}}\|_{2}+\frac{(\lambda-1)^{2}}{2}\|\tilde{\mathbf{p}}\|_{2}^{2}$. Scalar variable λ can be optimally determined as $\lambda^{*}=\left[1-t /\|\tilde{\mathbf{p}}\|_{2}\right]^{+}$. More specifically,

$$
\mathbf{p}_{\ell}^{\text {new }}=\max \left\{1-\frac{t_{\ell}}{\left\|\tilde{\mathbf{p}}_{\ell}\right\|_{2}}, 0\right\} \tilde{\mathbf{p}}_{\ell}
$$

- In summary, we iteratively update \mathbf{X} by gradient and update \mathbf{P} by proximal. Convergence is guaranteed by proper step size (e.g., by backtracking).

Benchmark

- We introduce a common greedy heuristic for comparison purpose.
- Greedily turn off one BS at a time; fix the on-off pattern (so the non-smooth part h can be ignored) and then optimize \mathbf{X} and \mathbf{P} by gradient.
- Drawbacks:
- Greedy can turn off (at most) one BS at each iteration.
- How BSs are ordered in the sequence of greedy test is critical to the performance; but it is hard to decide the sequence in practice.

Simulation Model

- 7 wrapped-around cells
- 1 macro BS and 3 pico BS s per cell
- 9 users uniformly distributed per cell
- Total bandwidth of 10 MHz dived into 4 equal bands
- Max Tx power spectrum density: macro is $-27 \mathrm{dBm} / \mathrm{Hz}$, pico is $-47 \mathrm{dBm} / \mathrm{Hz}$
- ON-power: macro is 1450 W , pico is 21.32 W

Rate CDF: Single-BS vs. Multiple-BS Association

BS Turning-Off: Greedy vs. Proposed Method

Conclusion

- We propose a novel multiple-band multiple-BS association, which is more flexible than the conventional single-BS association.
- We formulate a novel utility-minus-power problem to take both network throughput and power consumption into account.
- We propose a gradient projection to optimize the time-sharing variable \mathbf{X}.
- We apply iterative reweighting and proximal gradient to optimize the power variable \mathbf{P} in its sparse and non-differentiable objective function.
- Numerical results show that the proposed method enables effective balancing between network throughput and power consumption.

