Flexible Multiple Base Station Association and Activation for Downlink Heterogeneous Networks

Kaiming Shen¹, Ya-Feng Liu², David Y. Ding¹, and Wei Yu¹

¹Electrical and Computer Engineering Department University of Toronto

²Institute of Computational Mathematics and Scientific/Enginnering Computing Chinese Academy of Sciences

July 2017

Shen, Liu, Ding, and Yu (UofT, CAS) Flexible BS Association and Activation

July 2017 1 / 15

Motivation

- Consider a downlink HetNet where macro and pico BSs coexist.
- Macro has much higher Tx power & on-power than pico.
- Central questions in the network design:
 - Load balancing between macro and pico
 - Fair resource allocation within the cell
 - Cross-cell interference control
 - Power saving by BS turnoff
- This paper: A system-level optimization approach for the entire network.

A (10) × (10) × (10)

Flexible BS Association

- Most current works [Ye et al., '13] [Shen-Yu, '14] focus on single-BS association, i.e., the association of each user is fixed at one BS.
- We propose a more flexible policy for BS association:
 - User-BS association can be different across the frequency bands.
 - A user can be associated with multiple BSs across different bands.
 - We optimize $x_{k\ell}^n$: the fraction of time BS ℓ serves user k in band n.
- Our work further introduces *power saving* in the system design.

(日)

Problem Formulation

• Per-link rate (between user k and BS ℓ in band n):

$$r_{k\ell}^n = \frac{W}{N} \log \left(1 + \frac{g_{k\ell}^n p_\ell^n}{\sigma^2 + \sum_{\ell' \neq \ell} g_{k\ell'}^n p_{\ell'}^n} \right)$$

Per-user rate:

$$R_k = \sum_{\ell=1}^{L} \sum_{n=1}^{N} x_{k\ell}^n r_{k\ell}^n, \ k = 1, 2, \dots, K.$$

• Each BS ℓ has a power consumption (Tx power plus on-power):

$$Q_{\ell}(\mathbf{p}_{\ell}) = \mathbf{e}_{N}^{T} \mathbf{p}_{\ell} + \psi_{\ell} \left\| \mathbf{p}_{\ell} \right\|_{0}$$

where ψ_ℓ is on-power, $\mathbf{p}_\ell = (p_\ell^1, \dots, p_\ell^N)$ the Tx power across bands.

イロト 不得 トイラト イラト 一日

Problem Formulation (cont.)

• Consider maximizing log-utility and minimizing power jointly (given $\lambda \ge 0$):

$$\max_{\mathbf{X},\mathbf{P}} \sum_{k=1}^{K} \log(R_k) - \lambda \sum_{\ell=1}^{L} Q_\ell(\mathbf{p}_\ell)$$
(1a)

s.t.
$$0 \le \mathbf{p}_{\ell} \le \bar{\mathbf{p}}_{\ell}, \ \ell = 1, 2, \dots, L$$
 (1b)

$$\mathbf{X}^{n}\mathbf{e}_{L} \leq \mathbf{e}_{K}, \ n = 1, 2, \dots, N$$
(1c)

$$(\mathbf{X}^n)^T \mathbf{e}_K \le \mathbf{e}_L, \ n = 1, 2, \dots, N$$
 (1d)

$$\mathbf{X}^n \ge \mathbf{0}, \ n = 1, 2, \dots, N$$
 (1e)

(日)

• Constraints:

- (1b): Tx power constraint
- (1c): Total fraction a user is served from all BSs in one band ≤ 1 .
- (1d): Total fraction each BS allocates to all its users in one band ≤ 1 .

Iterative Reweighting

- It is difficult to optimize the ℓ_0 -norm term in Q_ℓ directly.
- We propose to approximate ℓ₀-norm as ℓ₂-norm via iterative reweighting, i.e., ||**p**_ℓ||₀ ≈ w_ℓ ||**p**_ℓ||₂, where w_ℓ(t + 1) = 1/||**p**_ℓ(t)||₂+τ(t)|.

Intuition: If some \mathbf{p}_{ℓ} is small, we raise its w_{ℓ} to encourage setting it to $\mathbf{0}$.

• This leads us to a new problem objective: $\max f(\mathbf{X}, \mathbf{P}) - h(\mathbf{P})$, which is composed of the smooth part

$$f(\mathbf{X}, \mathbf{P}) = \sum_{k=1}^{K} \log(R_k) - \lambda \mathbf{e}_L^T \mathbf{P} \mathbf{e}_N$$

and the non-smooth part

$$h(\mathbf{P}) = \lambda \sum_{\ell=1}^{L} \psi_{\ell} w_{\ell} ||\mathbf{p}_{\ell}||_{2}.$$

Shen, Liu, Ding, and Yu (UofT, CAS)

July 2017 6 / 15

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Gradient Projection for Updating ${\bf X}$

 $\bullet\,$ We first consider optimizing ${\bf X}$ alone with ${\bf P}$ held fixed, that is

$$\max_{\mathbf{X}} \qquad \sum_{k} \log \left(\sum_{\ell, n} x_{k\ell}^{n} r_{k\ell}^{n} \right)$$
(2a)

s.t.
$$\mathbf{X}^{n}\mathbf{e}_{L} \leq \mathbf{e}_{K}, \ n = 1, 2, \dots, N$$
 (2b)

$$(\mathbf{X}^n)^T \mathbf{e}_K \le \mathbf{e}_L, \ n = 1, 2, \dots, N$$
 (2c)

$$\mathbf{X}^n \ge \mathbf{0}, \ n = 1, 2, \dots, N.$$
 (2d)

This problem is convex!

- To attain the optimum, we iteratively update X to X in the gradient direction, then project X to the constraint: i.e., min_{Xⁿ} ¹/₂ ||Xⁿ X ||₂² s.t. (2b)-(2d).
- The projection can be done more easily in the dual Lagrangian domain.

Approach

Projection in the Lagrangian Dual Domain

• The Lagrangian function is (where \mathbf{y}^n and \mathbf{z}^n are dual variables)

$$\begin{aligned} \mathcal{L}(\mathbf{X}^n, \mathbf{y}^n, \mathbf{z}^n) &= \frac{1}{2} \|\mathbf{X}^n - \tilde{\mathbf{X}}^n\|_2^2 + (\mathbf{X}^n \mathbf{e}_L - \mathbf{e}_K)^T \mathbf{y}^n + ((\mathbf{X}^n)^T \mathbf{e}_K - \mathbf{e}_L)^T \mathbf{z}^n \\ &= \frac{1}{2} \|\mathbf{X}^n\|_2^2 - \operatorname{tr}(\mathbf{X}^n(\tilde{\mathbf{X}}^n)^T) + \mathbf{e}_L^T (\mathbf{X}^n)^T \mathbf{y}^n + \mathbf{e}_K^T \mathbf{X}^n \mathbf{z}^n \\ &- \mathbf{e}_K^T \mathbf{y}^n - \mathbf{e}_L^T \mathbf{z}^n + \operatorname{const}(\tilde{\mathbf{X}}^n) \end{aligned}$$

• Find $(\mathbf{X}^n)^* = \tilde{\mathbf{X}}^n - \mathbf{y}^n \mathbf{e}_L^T - \mathbf{e}_K (\mathbf{z}^n)^T$; substitute $(\mathbf{X}^n)^*$ back in \mathcal{L} yields

$$\min_{\mathbf{X}^n} \mathcal{L} = -\frac{1}{2} \| \tilde{\mathbf{X}}^n - \mathbf{y}^n \mathbf{e}_L^T - \mathbf{e}_K (\mathbf{z}^n)^T \|_2^2 - \mathbf{e}_K^T \mathbf{y}^n - \mathbf{e}_L^T \mathbf{z}^n + \text{const}(\tilde{\mathbf{X}}^n)$$

• Thus, the dual problem $\max_{\mathbf{y}^n \geq \mathbf{0}, \mathbf{z}^n \geq \mathbf{0}} \min_{\mathbf{X}^n} \mathcal{L}$ is equivalent to

$$\min_{\mathbf{y}^n \ge \mathbf{0}, \mathbf{z}^n \ge \mathbf{0}} \frac{1}{2} \| \tilde{\mathbf{X}}^n - \mathbf{y}^n \mathbf{e}_L^T - \mathbf{e}_K (\mathbf{z}^n)^T \|_2^2 + \mathbf{e}_K^T \mathbf{y}^n + \mathbf{e}_L^T \mathbf{z}^n$$

Solving this problem is more computationally efficient than the direct projection because its constraints are much easier!

Shen, Liu, Ding, and Yu (UofT, CAS) Flexible BS Association and Activation

Proximal Gradient for Updating \mathbf{P}

 $\bullet~$ For fixed ${\bf X},$ the optimization of ${\bf P}$ is

$$\max_{\mathbf{P}} \quad f(\mathbf{P}) - h(\mathbf{P}) \tag{3a}$$

s.t.
$$0 \le \mathbf{p}_{\ell} \le \bar{\mathbf{p}}_{\ell}, \ \ell = 1, 2, \dots, L.$$
 (3b)

Recall that function h is non-smooth, so gradient does not work here.

• We follow a proximal gradient approach [Parikh-Boyd,'14] by first updating **P** by gradient step with respect to the smooth part *f* only:

$$\tilde{\mathbf{p}}_{\ell} = \mathbf{p}_{\ell} + \beta_{\ell} \nabla_{\mathbf{p}_{\ell}} f, \ \ell = 1, \dots, L.$$

We then further update ${\bf P}$ to the proximal projection of $\tilde{{\bf P}} \colon$

$$\mathbf{p}_{\ell}^{\mathsf{new}} = \arg\min_{\mathbf{u}_{\ell}} t_{\ell} h(\mathbf{u}_{\ell}) + \frac{1}{2} \|\mathbf{u}_{\ell} - \tilde{\mathbf{p}}_{\ell}\|_{2}^{2}.$$

• Intuition: The gradient of the smooth part $\tilde{\mathbf{p}}_{\ell}$ does not account for $h(\mathbf{P})$. The proximal gradient step adds a $\frac{1}{2} \|\mathbf{u}_{\ell} - \tilde{\mathbf{p}}_{\ell}\|_2^2$ term to min of $h(\mathbf{P})$.

July 2017 9 / 15

Proximal Gradient for Updating P (cont.)

- A nice feature of our problem is that it has closed-form proximal projection!
- We solve $\min_{\mathbf{u}} t \|\mathbf{u}\|_2 + \frac{1}{2} \|\mathbf{u} \tilde{\mathbf{p}}\|_2^2$. By setting its subgradient to 0, we get: $(t/\|\mathbf{u}\|_2 + 1)\mathbf{u} = \tilde{\mathbf{p}}$, so \mathbf{u}^* and $\tilde{\mathbf{p}}$ are of the same direction, i.e., $\mathbf{u}^* = \lambda \tilde{\mathbf{p}}$, $\lambda \ge 0$.
- We then consider $\min_{\lambda} t\lambda \|\tilde{\mathbf{p}}\|_2 + \frac{(\lambda-1)^2}{2} \|\tilde{\mathbf{p}}\|_2^2$. Scalar variable λ can be optimally determined as $\lambda^* = [1 t/\|\tilde{\mathbf{p}}\|_2]^+$. More specifically,

$$\mathbf{p}_{\ell}^{\mathsf{new}} = \max\left\{1 - \frac{t_{\ell}}{\|\tilde{\mathbf{p}}_{\ell}\|_2}, 0\right\} \tilde{\mathbf{p}}_{\ell}.$$

 In summary, we iteratively update X by gradient and update P by proximal. Convergence is guaranteed by proper step size (e.g., by backtracking).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Benchmark

- We introduce a common greedy heuristic for comparison purpose.
- Greedily turn off one BS at a time; fix the on-off pattern (so the non-smooth part *h* can be ignored) and then optimize **X** and **P** by gradient.

• Drawbacks:

- Greedy can turn off (at most) one BS at each iteration.
- How BSs are ordered in the sequence of greedy test is critical to the performance; but it is hard to decide the sequence in practice.

Simulation Model

- 7 wrapped-around cells
- 1 macro BS and 3 pico BSs per cell
- 9 users uniformly distributed per cell
- Total bandwidth of 10MHz dived into 4 equal bands
- Max Tx power spectrum density: macro is -27dBm/Hz, pico is -47dBm/Hz
- ON-power: macro is 1450W, pico is 21.32W

(4) (5) (4) (5)

Rate CDF: Single-BS vs. Multiple-BS Association

July 2017 13 / 15

BS Turning-Off: Greedy vs. Proposed Method

э

Conclusion

- We propose a novel multiple-band multiple-BS association, which is more flexible than the conventional single-BS association.
- We formulate a novel utility-minus-power problem to take both network throughput and power consumption into account.
- We propose a gradient projection to optimize the time-sharing variable X.
- We apply iterative reweighting and proximal gradient to optimize the power variable **P** in its sparse and non-differentiable objective function .
- Numerical results show that the proposed method enables effective balancing between network throughput and power consumption.