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As 5G aims to provide 1000-fold network capacity to mobile networks [1], heterogeneous

networks (HetNet) have become a promising technology to deliver this ambitious goal.

This thesis proposes a novel heuristic algorithm to maximize network utility of a down-

link SISO HetNet jointly over user association and BS power control. This thesis has

the following main contributions. First, the proposed problem formulation allows for

investigation of a trade-off between network utility and network power consumption in

the HetNet. Through finding the appropriate balance in the trade-off, the proposed

algorithm forms a non-greedy heuristic to determine the appropriate activation of BSs

under arbitrary total network consumption constraints. Greedy heuristics as motivated

by those in literature are further used to compare with the proposed heuristic. Further-

more, this thesis considers the division of the downlink spectrum into multiple sub-bands

and optimizes user association and BS powers independently over each sub-band. This

provides an interesting alternative to the existing “soft frequency reuse” (SFR) scheme

widely employed in mobile networks to maintain high network capacity while ensuring

coverage for cell-edge users. Rate performances under various sub-band divisions are

compared with the SFR scheme to examine the impact on user rates by considering a

two-tier HetNet in a regular hexagonal deployment, where pico BSs are placed at known

locations near the edges of macro-cells.
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Chapter 1

Introduction

1.1 Background and Motivation

The next-generation cellular network, popularly coined as “5G”, needs to be designed in a

way that can accommodate for the explosive growth of mobile traffic data. In 2015, global

mobile traffic grew by 74 percent as compared to 2014, and will increase by nearly eight-

fold, exceeding 30.6 exabytes by 2020 [2]. Recently, heterogeneous network (HetNet) has

become a promising technology to accommodate for the exponential growing demand

for mobile data [3, 4]. HetNet is a wireless network architecture where access nodes,

separated by tiers, are densely deployed to provide high rates to users anywhere in the

network. Tiers of a HetNet refer to different types of access nodes and the cell coverage

they provide, and typically, they include macro/pico/femto base stations (BSs). Pico

BSs, for example, have lower transmit power than macro BSs, and thus pico BSs are

typically deployed near macro-cell edges to provide coverage extension to cell-edge users.

Thus, HetNets in principle can shorten the distance between transmitters and receivers

to provide high rate data to users in the entire network. An illustration of a HetNet is

shown in figure 1 1.1 and shows the deployment topology of the access nodes on different

tiers.

1http://mwrf.com/test-amp-measurement/lte-aeicic-test-solution-solves-hetnet-interference [5]
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Chapter 1. Introduction 2

Figure 1.1: Heterogeneous Network Topology

A significant bottleneck in HetNet is the interference created from the dense deploy-

ment of BSs. In particular, pico BS and femto BS users suffer in rate because of the

high interference from nearby macro BSs. It has been noted that even with targeted

deployment of pico BSs in high-traffic zones and hotspots, most users will still detect

the strongest downlink signal from macro BSs [6]. This causes the under-utilisation of

lower-tier BSs and overloading of high-tier BSs as users associate with the BS providing

the strongest downlink signal. Furthermore, as traffic loads of macro BSs increase, so

would the BSs’ transmit powers, which would produce even more interference to the sur-

rounding low-tier BSs [7]. This creates a positive feedback loop that severely undermines

the effectiveness of low-tier BSs. Thus, a crucial design decision in HetNet is to raise the

effectiveness of network heterogeneity.

As 5G aims to have 1000-fold capacity [1], a design paradigm shift in recent years that

is drawing popularity is the idea of full frequency reuse (FFR) [8]. Under FFR, mobile

networks have cell re-use factor of 1, meaning that each cell shares the entire spectrum for

radio transmission. The increased bandwidth results in increased rates, but deteriorates

rates of cell-edge users. Dense deployment of low-tier access nodes near the cell-edge

in a HetNet is a promising solution to increase cell-edge rates on two aspects. First,
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as aforementioned, the low-tier access points is closer to cell-edge users than the macro

BSs. Second, the transmit powers of these pico BSs is low, which reduces interference to

other pico BSs nearby. However, proper management of BS powers and user association

is still needed to encourage users to be served on the lower tiers of the network while not

suffering high intra-cell and inter-cell interference from nearby macro BSs transmitting

on the same spectrum.

Apart from increased rates for cell-edge users, another benefit of a properly managed

HetNet is the reduction of network consumption power. Base stations in a cellular net-

work account for 80% of the total network energy consumption [9, 10], with a modern

macro BS (e.g. a typical UMTS BS) typically consuming 800-1500W [11]. Offloading

traffic to low-tier BSs therefore has the added benefit of reducing network consumption

power by turning off macro BSs, in addition to improved rates of cell-edge users due to

reduced macro BS interference.

Therefore, there is significant interest on interference reduction as well as traffic off-

loading from the macro-tier to lower tiers in HetNet. Through appropriately associating

users to the BSs on the right tier, and controlling which BSs are operating with how

much power, not only will all users enjoy high rates due to the proximity to a BS with

little interference, but the macro-tier will also experience less traffic load with potential

energy savings if the macro BS is not serving any users and thus can be shut off entirely.

1.2 Related Works

Enhancing the network capacity of HetNets has seen extensive work in literature, where

the main goal is to off-load traffic data from macro BSs to lower tier access points.

Traditional association of users to BSs providing the maximum signal-to-interference-

and-noise ratio (SINR), also known as max-SINR association, as mentioned in [6, 7],

under-utilises the lower tiers of the HetNet and often overloads the macro-tier BSs. A
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common idea of pushing users to low-tier BSs is cell range expansion (CRE), which is

considered in [6, 12–15]. Here a biasing factor is applied to the SINR of low-tier BSs to

encourage more users to associate with them instead of macro BSs. Such idea is simple

to implement, and robust against location variations of BSs and users [6]. However, a

significant drawback of such method is that users associated with low-tier BSs still suffer

from high interference of nearby macro BSs [14]. A variation on the CRE idea is to

explicitly force users that are associated with high-tier BSs to re-associate with low-tier

BSs. There are many metrics to evaluate the “best” low-tier BS for the macro-user to

re-associate. For example, in [16], the authors considered a green HetNet where some

pico BSs have stored energy off-line from battery supplies, and selects macro-users closest

to a pico-BS with most off-line energy to re-associate. Game and auction theory has also

been widely applied to encourage users to associate with lower tier BSs for effectiveness

in mobile traffic loading in HetNets. In [17], the authors considered the association of

users to HetNet access points as an “evolutionary game”. Here this is a more user-centric

approach to user association where users select BS based on the choices of other users. If

many other users are associating with a particular nearby BS, then the current user will

make a decision taking into account the loading of that BS as well as the rate achieved

on other BSs. In [18], the BSs adjust the transmit powers based on how much each users

“bid” to be served by that BS.

An interesting technique to reduce interference in HetNet is to first balance the loading

of users on different tiers, then run power control on the BSs to reduce the network

interference. In [6, 7], the authors have considered using “cost-benefit” analysis, where

the cost represents BS loading, to determine the proper loading of each BS, and in turn

encouraging some users to move away from the heavily-loaded macro BSs that would

have resulted from max-SINR association. Ye, et al. [6] proposed a distributed user

association algorithm based on the primal-dual decomposition of a centralized network

utility maximization problem. Shen, et al. [7] developed a distributed pricing-based
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association algorithm that is based on dual coordinate descent (DCD) method applied

on the dual of the original utility maximization problem. In both cases, the dual of

the utility maximization problem is the loading of each BS. For fixed association, Ye, et

al. showed that proportional fairness scheduling is the optimal scheduling scheme. As

a result, the dual of the primal utility maximization problem is the loading of the BS.

The idea is to determine the “price” of each BS based on its loading, and users then

associate with BSs based on the cost-benefit analysis. The cost is how heavily-loaded

the BS is, and the benefit is the amount of instantaneous rate it can provide to the user.

This is effective in pushing certain users to lower tiers of the HetNet when macro BSs’

loads become too high. However, the cost of BS loading is not well-defined when BSs

have zero loads. In this case, it is not clear what the optimal price for the loading of this

BS is. In [6, 7], authors considered the cases when there are many more users than BSs

in the network, such that the optimal solution sees each BS having to serve at least one

user. However, a tractable solution when the number of users in the network is few is

unclear from existing literature.

A prevailing method of controlling interference in HetNet and promote high rates

for cell-edge users is the employment of soft frequency reuse (SFR). In recent years,

full frequency reuse (FRone) has been proposed to increase the bandwidth for radio

transmission in mobile networks, thereby increasing the capacity. In order to reduce the

high interference experienced by cell-edge users from FRone, SFR has been a popular

solution [19–24]. The idea is to partition the cell into cell-centre and cell-edge regions,

and allocate a portion of the spectrum for cell-edge users that is distinct from cell-centre

users. Cell-edge users across the cells have a reuse factor of greater than 1. For the cell-

centre users, apart from the universal portion of the spectrum allocated to them, they

can also access cell-edge users’ bands from neighbouring cells, albeit at lower transmit

powers to reduce interference. In SFR for HetNet, pico BSs are allocated a portion of the

spectrum for cell-edge users with some reuse factor greater than 1, and macro BSs can
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access the spectrum of neightbouring pico BSs [24]. The state-of-art in user association

and BS power control under the SFR scheme remains to be the heuristic greedy algorithm,

both in downlink [21] as well as uplink [22]. A main challenge in SFR is to balance the

trade-off between improvement in rate and cell coverage for cell-edge users and network

capacity due to reduced bandwidth from spectrum division [19]. In [20], the authors

provided a heuristic simulation capturing the performance of SFR scheme under various

network parameters. In [19], the authors provided an analytical framework in evaluating

the trade-off between coverage and network capacity.

Iterative updating of association and power control remains popular in solving net-

work utility maximization problems. The main drawback is that BSs that were initially

associated with users would not be able to turn off, and similarly BSs that were off would

not be able to turn on. Shutting off BSs pre-maturely could potentially impact the net-

work capacity. In order to address this issue, several joint optimization methods have

been proposed. One such method is the minimization of the network power subject to

rate constraints [11, 25] or network coverage [26]. Such methods indirectly reduces the

interference of the HetNet by turning off high-powered BSs. Other methods include di-

rectly maximizing the sum rate of the network under the multiple-input-multiple-output

(MIMO) setting. Such method involves maximizing the weighted sum rate of the net-

work as function of the beamformers, while using the norm of beamformers as a regulator

term [4, 25, 27, 28], or constraining the L0-norm of the beamformers to obtain a sparse

beamforming solution [29]. Another interesting idea is to balance the tradeoff between

network power and user rates. Such idea is explored in [30], where authors considered the

maximization of sum network rate subject to user SINR constraints and with trade-off to

minimize network power, using a technique called Benders’ Decomposition. These ideas

are applied to maximize the (weighted) sum rate of the network. However, a more appro-

priate network performance model invoking log-utility has not been analysed, to the best

knowledge of the author, in a joint user association and BS power control optimization.
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Log-utility objective promotes cell-edge users to attain higher rates by associating with

low-tier access nodes and controlling the power of macro-tier access nodes, which raises

network heterogeneity. Furthermore, in order to fully account for the intricate balance

between user association and BS power control, these two factors must be optimized

jointly. This is a difficult problem in general since all the known problem formulations

are non-convex [30]. Currently, the state-of-art is a set of algorithms based on greedy BS

selection as a way to push users to BSs of lower tiers and at the same time adjusting for

BS powers. Heurestic power level adjustments [31] and iterative BS turn off [9, 11, 27]

are some of the prevailing methods to jointly optimize for user association and BS power

control. These methods involve defining a heuristic score based network utility [9], or

energy usage [11,27], and iterative activates (or deactivates) BSs that best optimizes for

the objective until no such optimizations can be made.

1.3 Thesis Overview

This thesis presents a formulation of network utility maximization problem with possible

BS consumption trade-off and investigates the patterns in user association and BS power

that result from the optimization. Detailed models on network utility as well as BS con-

sumption powers are presented in chapter 2. User association and BS power control are

jointly optimized with a heuristic-based hybrid gradient-“pseudo Newton (pN)” projec-

tion method, described in detail in chapter 3. Throughout the simulation, we consider

a two-tiered HetNet arranged in a 19-cell hexagonal wraparound layout having three

sectors per cell, with three pico BSs per macro BS and one macro BS per sector.

Under the model of a regular network, with pico BSs placed at known locations near

a macro-cell edge for simplicity, we simulate the maximization of network utility with

potential power consumption trade-off using the proposed algorithm and investigate the

following:
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1. Can cell-edge users in a HetNet experience higher rates with the division of downlink

spectrum into multiple sub-bands, and how does this compare with existing SFR

scheme?

2. In a network where there is a total BS consumption power limit, can the HetNet

provide the same network utility with tighter consumption power limits? In other

words, does the interference reduction of some BSs turning off compensate for the

reduced number of active BSs?

3. How to select which BSs to remain active under a total network consumption limit

and how to further associate with these BSs?

For the investigation of multiple sub-band in the network, we focus exclusively on

the maximization of network log utility, subject to per-BS power spectral density (PSD)

and user association constraints. For the investigation of BS turn-off and its impact on

network utility, we introduce the power consumption trade-off and vary the weight of the

trade-off to analyse network performance. The results, based on the proposed heuristic

algorithm and the simulation model, yielded the following:

1. Having the bandwidth divided into multiple sub-bands improve the rates for cell-

edge users as compared to that of single-band, and this effect is more pronounced as

the number of users in the network increases. Multi-band operation with four sub-

bands yielded 16.4%, 22.1%, and 48.6% rate improvements for the 10th percentile

users, compared to the single-band operation for 57, 114, and 228 users in the

network, respectively. Furthermore, the multi-band set-up allowed flexibility for

users to potentially occupy the whole spectrum, where needed, to increase network

capacity. In SFR, under the simulation model, each BS can at best access a fraction

of the total downlink bandwidth, hence negatively affecting network capacity.

2. Reducing network consumption power accordingly decreases network utility, as

turning BSs off do not compensate for the reduced number of active BSs available
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to serve all the users. Results showed decreasing trend in network sum rate when

the network consumption limit is reduced. This suggests that turning off BSs and

pushing the affected users to other BSs increases the loading for those remaining

active BSs, and that the deterioration of rates due to the increased loading is not

properly compensated by the reduced interference from BS turn-off.

3. Through finding the appropriate trade-off between network utility and network

power consumption, a non-greedy heuristic for finding the appropriate set of active

BSs is possible. This is done through direct joint optimization of user associa-

tion and BS power control. For context, the utility-power trade-off curve for the

proposed algorithm is compared with the trade-off curve from greedy heuristics as

motivated by those presented in section 1.2.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the problem back-

ground. Chapter 3 discusses the problem formulation and proposes a hybrid gradient-pN

projection algorithm to solve the problem. Chapter 4 presents simulation results of the

proposed algorithm and discusses the implications of the results. Finally, Chapter 5

concludes the thesis.

1.5 Notations

Bold-faced lower-case letters represent vectors (e.g. p). Alternatively, regular letters

with sub/super scripts enclosed in square brackets also represent vectors, but in the form

that illustrates the indexing of each element of the vector. For example, [xfk,b] represents

the vector x, where each element of the vector x is indexed by three variables: k, b, and

f . Regular lower-case letters without enclosing square brackets represent scalars, indexed



Chapter 1. Introduction 10

by the corresponding sub/superscripts. The Lp norm of a vector is denoted via || • ||p.

Furthermore, (•)T represents the transpose of the vector. RN and CN represent sets of

real and complex numbers in N dimensions, respectively.



Chapter 2

System Background

Consider a downlink, single-input-single-output (SISO), HetNet of K users and B BSs.

The downlink transmission channel is considered to be a flat-fading, time-invariant inter-

ference channel. In order to investigate the effects of frequency re-use on cell-edge users

in the HetNet, we allow the downlink bandwidth, W , to be divided into F sub-bands

of equal bandwidth. Over each sub-band, BSs can serve multiple users. Note that it is

permissible to set F = 1, in which case no such division exists and the network operates

under reuse factor of 1 (universal frequency reuse). The ability to consider different val-

ues of F allows for comparison of performance between the multi-band (F > 1) and the

single-band (F = 1) system, and helps to answer the question of whether HetNets pro-

vide higher rates to cell-edge users from dividing the entire downlink band into multiple

sub-bands than without the sub-bands division. Denote k, b, and f as indices over the

set of K users, B BSs, and F sub-bands of transmission, respectively.

The channel gain between user k and BS b over sub-band f is denoted as gfk,b ,

|hfk,b|2. Here hfk,b ∈ C is the corresponding complex channel coefficient, and is determined

from both large-scale fading and small-scale fading. Large-scale fading is caused by the

attenuation of transmitted signals as they propagate from BSs to users, and is dependent

on the distance between the transmitter and the receiver, as well as shadowing effects.

11
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The collective large-scale fading effect is called path loss [32]. Small-scale fading, on the

other hand, is dependent on the specific signals transmitted to the receiver. The different

arrival times and angles of signal components causes various constructive/destructive

interference and thus attenuates the overall transmitted signal accordingly. The overall

effect of the two types of fading yields the following equation for hfk,b:

hfk,b =
√
ξk,bφ

f
k,b (2.1)

In an FDMA system, on each sub-band f , different signals are transmitted, which

gives rise to a distinct small-scale fading coefficient φfk,b (assuming the channel is flat-

fading). In this thesis, we are assuming that independent signals are transmitted on each

sub-band, and without loss of generality, the signals have unit power. Thus, assuming the

signals are modulated using quadrature amplitude modulation (QAM), the transmitted

signal can be modelled as independent, circularly symmetric complex Gaussian random

variables [33], with mean 0 and covariance matrix

1
2

0

0 1
2


Large-scale fading is denoted as ξk,b, and is only a function of the distance and the

environment between the transmitter and the receiver. We are assuming that such in-

formation is available and readily-accessed from a central server. In practice, there is

extensive work in literature on estimating channel based on long-term statistics, and

many well-known path loss models have been standardized [34] and used throughout the

field of wireless communications.

User association and BS power control occur at much larger time-scales than those

for individual signal transmissions, and as such they cannot account for fast-fading. As a

result, the channel gains used for these network operations are evaluated using long-term

channel statistics. Thus, the gain between user k and BS b on a particular sub-band

using the long-term channel statistics is the same for all other sub-bands, and is only a

function of the large-scale fading. Thus, during user association and BS power control,
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gfk,b = ξk,b ∀f . However, in simulations, actual user achievable rates are still evaluated

with fast-fading over many samples of signal transmissions to obtain an average result,

which is not necessarily equivalent to the result obtained ignoring small-scale fading.

2.1 Network Utility Model

We denote rfk,b as the instantaneous rate that user k can achieve with BS b on sub-band f .

Denote p = [p1
1, · · · , pF1 , · · · , p

f
b , · · · , pFB]T as the stacked vector of [pfb ], where pfb denotes

the downlink transmission PSD of BS b on frequency band f . Let σ2 be the variance of

the receiver noise, and gfkb be the long-term channel gain from BS b to user k on sub-band

f . Using the Shannon-Hartley equation [33] applied to the downlink SISO network case,

we have the following expression for rfk,b:

rfk,b ,
W

F
log2(1 + γfk,b) (2.2)

γfk,b ,
gfk,bp

f
b

σ2 +
∑

l 6=b g
f
k,lp

f
l

(2.3)

is the receiver SINR expression for user k from BS b on sub-band f .

Now, the long-term user rates is the average of many user rates achieved after schedul-

ing on the BSs that serve the user. Denote a resource block (RB) as a time slot over a

sub-band. In a TDMA system, on each RB for each BS, only one user can occupy the RB

to receive the downlink signal. However, over time the rate user k obtains from BS b on

sub-band f is the average of the fraction of time slots on sub-band f that user was served

by BS b. This motivates the definition of a “resource-sharing” variable, xfk,b ∈ (0, 1) that

describes the fraction of time user k is served by BS b on sub-band f . In our model, we

allow multiple users to be served by the same BS on the same sub-band, over a fraction

of the total allotted time resource on that sub-band for that BS. Similarly, in an FDMA
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system, xfk,b can also be considered as the “resource-sharing” variable in denoting the

fraction of spectrum BS b is allocating for user k on sub-band f .

Denote x = [x1
1,1, · · · , xF1,1, · · · , xF1B , · · · , x

f
k,b, · · · , xFK,B]T as the stacked vector of the

resource-sharing variables [xfk,b] (note that if xfk,b = 0, then it implies that user k is not

served by BS b on slot f). The long-term rate user k achieves with BS b over all sub-bands

is:

sk,b =
F∑
f=1

xfk,br
f
k,b (2.4)

It follows that the total user rate for user k attained over all frequency bands and by

all BSs is thus:

Rk ,
B∑
b=1

sk,b (2.5)

to which the network utility comes about as
∑K

k=1 log(Rk). The choice of log-utility

comes about in the HetNet as an alpha-fairness criterion with α = 1, and is used to

promote fairness to users with lower rates in the network. This is particularly important

in HetNet, as cell-edge users are encouraged to take advantage the deployment of low-tier

access points to attain higher rates.

2.2 Base Station Power Model

In order to examine the trade-off between network log utility and total BS consumption

power, we present a tractable model describing BS power consumption. As noted in [9,27,

35, 36], the BS power consumption model involves two parts that are closely dependent

of each other. The first part is the total BS transmit power of BS. The second part

represents the BS on-power. The on-power is the amount of constant power a BS uses

when it is transmitting signal to users on any of its RBs in the downlink. For example,



Chapter 2. System Background 15

in [27], the BS power consumption model is as follows:


ηPt + Pa, if Pt > 0

Ps, otherwise

(2.6)

Here, η represents power amplifier efficiency [27]. As the BS transmits power Pt > 0,

it incurs an on-power of Pa in the active mode. When Pt = 0, it incurs an on-power in

the sleep mode, Ps.

Without loss of generality, we can consider a simplified power model, as shown in

(2.7), such that the on-power is considered 0 when the BS is not transmitting on any of

its RBs, and incurs a fixed on-power otherwise. Such simplification is advantageous in

that the power model can now be formulated in terms of norms. Specifically, L0-norm

is a special norm that is introduced to describe whether a vector is a zero vector or not.

For some x ∈ RN , ||x||0 is an integer that represents the number of non-zero elements

in x. There are many techniques in literature that deal with the non-differentiability of

the L0-norm, such as in [37], and they have been applied to solve for similar network

problems such as in [29].

Qb(pb) ,
F∑
f=1

pfb + ψb||pb||0 (2.7)

Here, Qb(pb) represents the total power consumed by BS b. The variable pb is the

stacked vector of [pfb ] for some b. If BS b is transmitting at least some power on at least

one of the F sub-bands, then it incurs a constant on-power of ψb. Otherwise, it is zero.

This is reflected by the second term of (2.7) with the use of the L0-norm.

The total network consumption power is defined accordingly in (2.8) as the sum of

the total consumption powers of all the BSs in the network.

Θ ,
B∑
b=1

Qb (2.8)



Chapter 3

Problem Formulation

Here, the thesis presents the user association and BS power control problem for the

downlink, SISO HetNet with the network utility and BS power consumption models

describe in chapter 2. The problem is formulated as (3.1). This problem formulation

allows us to investigate the various aspects of HetNet operations summarized in the

thesis overview in section 1.3.

maximize
x,p

K∑
k=1

log(Rk)− ρ
B∑
b=1

Qb(pb) (3.1a)

subject to 0 ≤ pfb ≤ p̄fb ∀b, f (3.1b)
K∑
k=1

xfk,b ≤ 1 ∀b, f (3.1c)

xfk,b ≥ 0 ∀k, b, f (3.1d)

The objective function, (3.1a), represents a trade-off between network log-utility in

the first term and the total BS power consumption in the second term. The parameter

ρ controls the amount of weight applied to each of the trade-off factors. Note that

when ρ = 0, the formulated problem reduces to a network utility maximization problem.

Constraint (3.1b) is the per BS, per sub-band PSD constraint. Constraints (3.1c) and

16
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(3.1d) describe the resource constraint on each BS b for each sub-band f , as the total

fraction of time all the users spend on any RB cannot exceed one.

The first aspect of the problem formulation is that users can be potentially served by

more than one BS. This idea is motivated in [6], who also proposed to relax the single-BS

association association constraints in order to reduce the complexity of the problem. This

technique, called “Fractional User Association (FUA)”, turns the combinatorial nature

of user association constraints into one which is affine through the relaxation. Although

it is more difficult to implement multiple-BS association than single-BS association in a

practical system [6], FUA offers an upper bound on the performance of user association.

The results showed that a by using a rounding technique, whereby each user is assigned to

the BS providing the highest rate among all serving BSs for that user, FUA’s upper bound

is quite tight compared to directly optimizing for single-BS association. Therefore, for

the problem formulation in (3.1), we adopt a similar rounding technique. The single-BS

association solution is obtained from the solution to problem (3.1) as follows:

Denote x∗ as the optimization solution of problem (3.1) for user association. The

rounding technique we use to obtain solution y∗, that is, single-BS association solution,

is:

yf∗k,b =


xf∗k,b, If b = arg max

l

∑
f x

f∗
k,lr

f
k,l

0, otherwise

(3.2)

This allows us to compare single-BS and multiple-BS association results with power con-

trol.

Furthermore, the proposed problem formulation also uses the resource-sharing vari-

able, x, to represent both user association and scheduling. In a SISO downlink network

where the channel is static during user association, proportional fairness scheduling is

the optimal resource allocation scheme for fixed association [6]. This motivated problem
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formulation of the user association problem where the network utility function is in the

form of a ratio of the instantaneous rates to the BS loads [6, 7]. Since in these formula-

tions, BS loading is an optimization variable, solutions often omit the cases where BSs

have zero loads, which makes the denominator equal to zero. The proposed problem

formulation addresses this issue, as if a BS is idle, then its corresponding association

variable, xfk,b ∀ k, f is simply 0. Performance comparisons of the proposed problem

formulation and that proposed in [7] is compared for cases when the number of users in

the network is around the same as the number of BSs, in section 4.3, to investigate the

effect of zero-loaded BSs in the network on network performance.

The proposed problem formulation also allows for comparison between single-band

operations and multi-band operations by setting different values of F . For F = 1, this

is the single-band operation, and for F > 1, this is the multi-band operation with F

sub-bands in the downlink spectrum.

The trade-off parameter ρ can be changed to reflect various total network power con-

sumption constraints. With this parameter, we can investigate whether we can achieve

the same level of network utility with less BS consumption power through plotting the

network utility (or sum rate) achieved as solution to problem 3.1 against different con-

sumption limits. Furthermore, we can plot the same curve with some existing state-of-

art algorithms using greedy selection to turn off BSs, and compare the performances to

determine if the proposed algorithm can achieve higher network utility with the same

consumption limit compared to the greedy algorithm.

3.1 Proposed Algorithm

Note that the objective function of problem (3.1) is non-differentiable due to the presence

of the L0-norm. However, a popular technique is to approximate the L0-norm by a mixed

L1-L2 norm [27]. It is a common way of inducing group sparsity on a vector in groups of a
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particular sub-dimension. Here we approximate ||pb||0 by wb||pb||2, i.e. we are promoting

group sparsity on p over groups of f by the mixed L1-L2 norm where the L2-norm is

weighted. The choice of the re-weighted L2-norm, combining with the non-negativity

of p, makes the power model differentiable and resolves the integer nature of the L0-

norm. The mixed L1-L2 norm has seen application in machine learning as the group

least-absolute selection and shrinkage operator, and has been used with similiar effects

on promoting sparse beamformers in MIMO systems [25].

Applying the mixed norm technique, the following problem is an approximation to

the main problem in (3.1).

max
x,p

K∑
k=1

log(Rk)− ρ
B∑
b=1

(
F∑
f=1

pfb + ψbwb||pb||2

)
(3.3a)

s.t. 0 ≤ pfb ≤ p̄fb ∀b, f (3.3b)
K∑
k=1

xfk,b ≤ 1 ∀b, f (3.3c)

xfk,b ≥ 0 ∀k, b, f (3.3d)

The weights on L2-norm are updated as follows using techniques in [37]:

wb =
1

||pb||2 + τ
(3.4)

where τ > 0 is a small regularization variable.

Now that the objective function in problem 3.3 is differentiable over the feasible set,

we propose a hybrid gradient-pN projection algorithm to derive a local optimum solution

jointly in x and p for some fixed ρ. Then we perform bi-section search on ρ to determine

the optimal trade-off parameter given P̄ . The idea is to update jointly the optimization

variables (x,p), and in each step, project the updated variables onto the constraint set.
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From a projection perspective, this is practical. The variables x and p are separated in

the constraints and thus can be projected separately. The projection onto the constraint

(3.3b) regarding p is a simple box-type projection, and projection onto constraints (3.3c)

and (3.3d) regarding x is a projection onto the probability simplex, which is a convex

problem with many existing techniques proposed, such as in [38].

For the direction of updating the variables, popular methods are gradient descent and

Newton’s method. Gradient descent algorithm suffer from slowness in convergence of the

objective function, while Newton’s method requires higher complexity in calculating the

inverse of the Hessian of the objective function [39]. Given that there are (K+1)×B×F

optimization variables in (x,p), both existing algorithms are quite impractical to update

the variables. As such, this thesis proposes a hybrid gradient-pN projection algorithm

that gives fairly fast convergence rates without requiring high complexity in computing

the inverse of the Hessian. Such method is motivated from [7, 40] and heuristic results

on pN-projection have shown that the results are close to the Newton’s method but

with much reduced complexity. We apply the hybrid gradient-pN projection method to

update (x,p). The reasoning for the choice is as follows. As analysed later in section

3.2, computing the first derivative of the objective function with respect to xfk,b scales

linearly in both K and F , while the first derivative of the objective function with respect

to pfb scales quadratically in K. Therefore, the convergence rate bottleneck is in p, and

pN-projection is used to invoke faster convergence. In summary, pN-projection is used

on updating p, while x is jointly updated using gradient projection. Actual algorithm

showed fairly quick convergence.

The pN-projection method is as follows. Denote f(x,p) as the objective function in

(3.3a). The pN update direction with respect to each optimization variable is equal to

the ratio of the partial first derivative of f with respect to the variable to the absolute

value of the partial second derivative of f with respect to the variable. That is, let y

be an element in the optimization variable vector [xT ,pT ]T . The update direction for y,
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denoted as ∆y, using pN method is:

∆y =
∂f

∂y

/∣∣∣∣∂2f

∂y2

∣∣∣∣ (3.5)

while the gradient projection update direction is simply the first derivative of f with

respect to y.

Equation (3.5) is essentially a simplified Newton’s method update step, where instead

of having the update direction equal to −(∇2f)−1∇f as per Newton’s method, the pro-

posed method computes only the diagonal entries of the Hessian of f with respect to

each variable. Due to the non-concavity of objective function (3.3a), in order to ensure

an incremental updating direction, we drop the minus sign in front of the Newton’s up-

date step and take the absolute value of the diagonal entries of the simplified “Hessian”

inverse. Doing so ensures that for each individual variable, the updating direction is the

same as the first derivative with respect to that variable, and thus ensures the incremental

increase of the objective function [7].

The update direction with respect to xfk,b is:

∆xfk,b =
rfk,b∑B

b=1

∑F
f=1 x

f
k,br

f
k,b

(3.6)

The update direction with respect to pfb is:

∆pfb =
∂f

∂pfb

/∣∣∣∣∣ ∂2f

∂(pfb )
2

∣∣∣∣∣ (3.7)

With:
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
∂f

∂pfb
=

∑K
k=1

(
x
f
k,b

(1+γ
f
k,b

)

)(
γ
f
k,b

p
f
b

)
−gfk,b

∑
l6=b

[(
x
f
k,l

(1+γ
f
k,l

)

)(
(γ
f
k,l

)2

g
f
k,l
p
f
l

)]
Rk log(2)

− ρ
(

1 + ψbwb
pfb
||pb||2

)
∂2f

∂(pfb )2
=
{∑K

k=1
ARk−B
R2
k log(2)

}
− ρ

(
ψbwb

||pb||22−(pfb )2

||pb||32

)
(3.8)

A and B are defined as follows:


A = −

(
xfk,b

(1+γfk,b)

γfk,b

pfb

)2

− (gfk,b)
2
∑

l 6=b

(
xfk,l

(1+γfk,l)

(γfk,l)
2

gfk,lp
f
l

)2

+ 2(gfk,b)
2
∑

l 6=b

(
(γfk,l)

3

(gfk,lp
f
l )2

)(
xfk,l

(1+γfk,l)

)2

B =
(
∂f

∂pfb

)2

(3.9)

Where Rk represents the total long term rates for user k as defined in (2.5), and γfk,b

denotes the receiver SINR between user k and BS b over sub-band f , as defined in (2.3).

The proposed algorithm updates each xfk,b through:

xfk,b(t+ 1) = PΩb,f

(
xfk,b(t) + αnt∆x

f
k,b

)
(3.10)

Where PΩ(.) denotes the projection onto the set of probability simplex, Ω. Here, the

probability simplex defined by Ωb,f is simply:

Ωb,f =


∑

k x
f
k,b ≤ 1

xfk,b ≥ 0 ∀k
(3.11)

The proposed algorithm updates all pfb through:

pfb (t+ 1) =
[
pfb (t) + αnt∆p

f
b

]p̄fb
0

(3.12)
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The update step size, αnt, can be determined via backtracking line search [39].

The proposed algorithm to solve the main problem (3.1) is described in alg 1.

Algorithm 1 Joint Optimization of User Association and BS Power Control

INPUT: Channel Gains, Network Power Consumption Limit P̄
OUTPUT: Optimal user association and scheduling x∗ and optimal BS downlink
transmit power p∗

1: Pick large starting ρ
2: repeat
3: Initialize x, p to feasible values
4: Initialize w = 1
5: repeat
6: Solve problem (3.3) for fixed w = [wb] and ρ using hybrid gradient-pN projec-

tion
7: Update wb for all b according to (3.4)
8: until Maximum iterations reached, or convergence in (3.3a)
9: Compute the total network power consumption Θ using equation (2.8). If Θ < P̄ ,

record down the network utility. Keep track of the best network utility achieved with
Θ < P̄

10: Perform bi-section search update on ρ
11: until Maximum iterations reached, or network utility cannot be improved further,

or Θ = P̄
12: If needed, apply (3.2) to obtain y∗, the single-BS association solution from the multi-

BS solution x∗

3.2 Algorithm Complexity

The proposed joint update of x and p in algorithm 1 is dependent on three factors:

number of users in the network (K), number of BSs (B), and the number of sub-bands

(F ). In this section we present a time-complexity analysis of the algorithm in terms of

K and F , so that we can obtain a per-BS complexity in user association and BS power

control. This is useful as the algorithm can potentially be distributed over each BS,

and in simulations, the number of BSs is fixed. From the proposed algorithm, the main

operations are taking the gradient of the objective function and the projection, thus these
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two operations affect the time complexity of the algorithm.

Projection with respect to x for each (b, f) has complexity of O(K logK) using the

projection algorithm in [38]. Thus, the total complexity for each BS is O(F (K logK)).

Projection with respect to p is just a box-type constraint with complexity O(F ). Thus,

the overall per-BS time complexity of the projection step of the algorithm isO(F (K logK)).

For the gradient operation, note that the gradient of the main objective function in

(3.1a) with respect to x linearly scales with K and F . The gradient with respect to xfk,b

is simply
rfk,b
Rk

. The bottleneck is the calculation of Rk for each k. From (2.5), it is easy

to see that for each k the calculation of Rk scales linearly with respect to F for each BS.

Thus, the overall complexity of taking the gradient with respect to x is O(KF ). With

respect to p, however, is less straightforward. The operation still scales linearly with

respect to F , since BS transmit power on a sub-band is independent of other sub-bands.

However, the gradient operation scales quadratically in K since for each BS and for each

user k, the gradient is a function of both how much the BS contributes to the rate of

user k and how much interference it causes to all other users k′ 6= k. Thus, the overall

gradient complexity is O(KF +K2F ) = O(K2F ).

Since the gradient operation is the dominant operation, the overall time complexity

of the proposed algorithm for each BS is thus O(K2F ).



Chapter 4

Simulation Results

We consider a two-tiered HetNet containing 19 macro-cells with 3 sectors, with 1 macro

BS at the cell center in each sector, and 3 pico BSs in each sector near the cell-edge for

a total of 9 pico BSs in the sector. For simplicity, the pico BSs are placed at known

locations near the cell edge. The complete set of simulation parameters is described

in table 4.1. The cell layout and path loss models are taken from the standard 3GPP

documents [34], and the different BS on-powers are taken from [41]. Figure 4.1 shows a

sample realization of the layout with 57 users in the network, with one user distributed

uniformly in each sector.

In sections 4.1, 4.2, 4.3, and 4.4, we focus exclusively on network utility maximization

in order to investigate the effects of the proposed algorithm on user association and BS

power control under various settings, such as multi-BS vs single-BS or multi-band vs

single-band. Here, ρ is set to be 0 and we denote such case as the network operating

under maximum network consumption limit, since any number of BSs can be active as

needed to maximize the network log-utility. In section 4.5, when BS turn off is introduced,

we then vary ρ to investigate network performance under certain network consumption

limits.

25
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Figure 4.1: Simulation Set-up Example

4.1 Joint vs. Iterative Algorithm

Here we first note that jointly updating user association and BS power control is advan-

tageous over iterative update. The main reason is that a common starting point for the

iterative update of x and p is to have all the BSs transmitting at maximum power [7].

Such initial point encourages users to be associated with macro BSs and the idle pico BSs

are shut off in the subsequent power update. This not only under-utilises pico BSs and

reduces cell-edge users’ rates, but also overloads macro BSs and thus negatively affects

cell-center rates.

Figure 4.2 illustrates the overall rate gain on all percentiles for the joint update over

iterative update of user association and BS power, operating under maximum power
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Parameter Value
Cell Layout hexagonal
Tiers 2
Number of Macro BS 57
Number of Pico BS 171
Macro BS Density 1 per cell
Pico BS Density 3 per cell
Sectorization factor 3
Cell Re-Use Factor 1
Macro-Cell Radius 0.8 km
Pico-Cell Radius 0.2 km
Macro BS max transmit PSD -27 dBm/Hz
Pico BS max transmit PSD -47 dBm/Hz
Macro BS On-Power 1450 W
Pico BS On-Power 21.32 W
Channel Bandwidth 10 MHz
Noise PSD -169 dBm/Hz
Noise figure 8 dB
Macro BS Pathloss 128.1 + 37.6 log10(d) (dB)
Pico BS Pathloss 140.7 + 36.7 log10(d) (dB)
Shadowing 8 dB
Fast Fading Coefficient ∼ CN (0, 1)

Table 4.1: Simulation Parameters

consumption limit. There is a consistent 0.2 bps/Hz gain for the joint update compared

to the iterative update, as expected.

4.2 Single-BS vs Multi-BS

Here we examine the solutions of the joint algorithm to see if users only effectively

associate with one BS even though they are allowed to be served by multiple BSs. When

we restrict each user to be served by only one BS, we apply the rounding technique

discussed in chapter 3 to obtain the single-BS solution. Note that from the proposed

problem formulation, it is possible for a user to be served by multiple BSs on the same

sub-band. We assume that there is no cooperation among the BSs and the downlink
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Figure 4.2: User CDF for K = 57, F = 1

spectrum acts strictly as an interference channel.

As shown in figures 4.3 and 4.4, there is no performance difference between the original

problem solution and the solution restricting each user to a single BS. Such result shows

that in practice, users should be served by one BS that is providing the highest long-

term rates as determined jointly from user association and BS power control. This further

shows that if a BS is idle, having to serve a user who is already been served by another

BS adds interference, which is not compensated properly from the additional user rates.

Also, users served by multiple BSs will likely overload BSs and thus negatively impact

network utility. It is interesting to note that there is a small gain in rates for cell-edge

users, due to that user opportunistically acquiring some additional rates from nearby BSs

that are already serving many users. In such cases, there is no additional interference
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Figure 4.3: User CDF for K = 57, F = 4

from extra BSs since they are already active, and since those BSs are already serving

many users, the rate degradation is not as significant as if the BSs were originally serving

just one user. Nonetheless, the rate gain is not significant. The main result here shows

that there is a tractable way of solving user association problems without the need to

restrict each user explicitly to be served by a single BS, as users tend to be served by a

single BS even if opportunities present otherwise. This makes user association constraints

affine and non-integer.
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Figure 4.4: User CDF for K = 228, F = 4

4.3 Single-Band Operations

Here we compare the performance of the joint algorithm in alg 1, under the single-

band set-up, operating at maximum network power consumption limit, against existing

state-of-art user association and BS power control algorithms under the same operating

conditions. In order to quantify single-band operations, we solve problem (3.1) setting

F = 1.

Figure 4.5 shows the user CDF curves of the proposed algorithm 1, along with the

dual-coordinate descent (DCD) algorithm with power control in [7] and the max-SINR

algorithm with power control for various users in the network. As expected, since the

proposed joint algorithm factors in the loading of BSs, 10th percentile users obtained

60% higher rates than max-SINR for each case of number of users in the network. In
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Figure 4.5: User CDF curves under single-band operations
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(a) User CDF for K = 114, F = 1
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(b) User CDF for K = 228, F = 1
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(c) User CDF for K = 285, F = 1
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addition, the proposed algorithm outperforms DCD when the number of users in the

network is small. This is due to the fact that some BSs have zero load as the number of

users is less or not much greater than number of BSs. As such, the dual update of the

loading “cost” for each BS is not appropriately assigned for those idle BSs. The proposed

algorithm deals with this issue through the resource-sharing variable [xfk,b], which simply

takes the value of 0 when user k is not served by BS b on sub-band f . This explanation

is justified through the DCD algorithm’s performance approaching that of the proposed

joint algorithm as the number of users in the network increases. When there are 570

users in the network, DCD performance is much closer to the proposed than with the

case of 114 users since there are more than twice the number of BSs than users, and so

most BSs are serving at least one user.

4.4 Multi-Band vs. Single-Band

In this section, we examine the effect of FDMA on network utility. It is expected that

cell-edge users can obtain higher rates from FDMA, since macro BSs can shut off certain

bands and allow pico BSs to serve cell-edge users on other bands without interference.

In order to quantify FDMA effects, we solve problem (3.1) setting F > 1, i.e. we divide

the downlink spectrum into multiple sub-bands of equal bandwidth. For the simulation,

we investigated the cases for F = 2 and F = 4.

Furthermore, drawing from Zhuang et al. [24]’s model of SFR on HetNet, we add SFR

scheme into the comparison as well. Here, we are assuming that the cell-edge spectrum

has reuse factor of 3. That is, the entire downlink spectrum is evenly divided into F = 4

sub-bands. The macro BSs in all cells have exclusive access to one of the sub-bands. The

remaining three sub-bands are allocated to the cell-edge users with each sub-band serving

as one frequency reuse channel. Thus, each pico BS in a cell is transmitting on one of the

three cell-edge sub-bands. The SFR scheme would reduce inter-cell interference between



Chapter 4. Simulation Results 33

pico BSs due to pico BSs in the neighbouring cells transmit on different sub-bands. In

order to increase capacity of macro-cell users, macro BSs can transmit on all the cell-edge

sub-bands except for the one assigned to pico BSs of the same cell.

Figures 4.6, 4.7, and 4.8 show the user CDF curves for network with 57, 114, and 228

users in the network, respectively, comparing the network rates achieved with different

number of sub-bands under the maximum power consumption limit. Note that since

the association and power control are done without channel data involving fast-fading

and only with long-term statistics, users are not optimized to be served opportunistically

on favourable sub-bands. Thus, here the performance gain is purely from the fact that

cell-edge users are served on sub-bands with reduced interference, as nearby macro BSs

can shut off some sub-bands. In 4.8, we also compare the result with the SFR scheme

having reuse factor of 3 for the cell-edge spectrum.

Numerical data on the improvement of cell-edge rates for multi-band over single-band

is presented in table 4.2.

Table 4.2: Percent Improvement of 10th Percentile Rates For Multi-band Over F = 1 Case

F = 4 F = 2
K = 57 16.4 19.4
K = 114 22.1 32.5
K = 228 48.6 33.8

Fixing the number of sub-bands for FDMA, the results show that the cell-edge user

rates improve further with more users in the network. This is due to the fact that when

the number of users in the network is large, there are less idle BSs, which makes the

impact of interference reduction through active BSs shutting off some of the sub-bands

more effective. When most BSs are already idle, i.e. all of their sub-bands are shut-off,

users would be more inclined to be served on all sub-bands of a BS since interference

from these idle BSs are removed. Furthermore, when the number of users in the network

is significantly high, increasing the number of sub-bands in the network would yield a
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Figure 4.6: User CDF for K = 57

greater improvement for cell-edge users due to BSs having more flexibility to serve users

on particular bands where nearby BSs are idle on those bands. This is seen as when K =

228, having four sub-bands yielded nearly 50% rate improvement, which is significantly

higher than 34% provided with only two sub-bands. The trade-off here, however, is the

overhead in managing the sub-bands, as the complexity of user association and BS power

control increases proportionally to F as discussed in section 3.2. Therefore, it is beneficial

to perform FDMA in the network to benefit the cell-edge users. In particular, when the

number of users in the network is high, greater number of sub-bands yields higher rates.

However, as number of sub-bands increase, computational complexity trade-off arises.

It is interesting to note that under the simulation model, SFR does not have significant

improvement of cell-edge rates as compared to single-band. Furthermore, the proposed
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Figure 4.7: User CDF for K = 114

algorithm with any number of sub-bands provided higher user rates in higher percentiles

than those from SFR. The reasoning is that under the assumption that the bandwidth

is evenly allocated to cell-centre and cell-edge users, the reduced available bandwidth

negatively impacts network rates. For cell-edge users, the reduced interference from SFR

is not compensated by the fact that only 1/4 of the total available bandwidth is assigned

to the pico BSs. Similar, for macro BSs, at most 3/4 of the total bandwidth is available

for transmission. Under the multi-band set-up, although there is possibility for BSs to

shut off certain bands to reduce interference for cell-edge users, it is also possible for BSs

to serve users on all sub-bands, where appropriate, to increase network capacity. This

flexibility allows for a greater efficiency in bandwidth usage that results in higher user

rates. If the bandwidth is allocated in an optimal way, it is possible for cell-edge users
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Figure 4.8: User CDF for K = 228

to experience reduced interference while maintain high network capacity. This pertains

to the trade-off between cell coverage and network capacity and as seen in section 1.2,

has been well-studied in literature. This result provides an alternative heuristic analysis

of FDMA effects in a HetNet.

4.5 BS Turn Off

In this section, we introduce the network consumption power trade-off by setting a net-

work consumption limit P̄ , and perform bi-section search on the system parameter ρ to

determine the network utility given this limit. We also compared the proposed algorithm

with heuristic benchmarks. The benchmark used for turning off BSs is motivated by



Chapter 4. Simulation Results 37

state-of-art greedy selection, as such in [9,11,27], such that in each iteration, if the total

network consumption power is greater than P̄ , a least-loaded BS is selected and turned

off, and the affected users are re-associated to nearby active BSs.
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Figure 4.9: Network Sum Rate vs. P̄ for K = 57

Figure 4.9 shows the trade-off curves of the proposed algorithm along with the greedy

benchmark, one with BS power control, and the other simply having BSs either trans-

mitting at max PSD or off (i.e. no power control). Figure 4.10 shows the CDF curves for

the various algorithms at P̄ = 50,000 W. The 100% rate gain for 10th percentile users

using the proposed algorithm under single-band, as compared to the greedy benchmark

with power control at P̄ = 50,000 W further illustrates the fact that prematurely turning

off BSs can negatively impact network utility. Furthermore, the presence of multiple

sub-bands add more flexibility for users to be served by nearby pico BSs under the power
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consumption limit with reduced interference from nearby macro BSs, which attributes to

a further 40% rate increase. If many pico BSs are turned off, the pico tier will be severely

under-utilised, such that even subsequent heuristics used to further re-associate users

to balance loading will not improve the rates. Joint optimization encourages efficient

employment of network heterogeneity to improve user rates and balance tier loading.

From 4.9, we also see that it is not possible for the network to expense less power

and still maintain the same level of network performance. Although the trade-off curve

is concave, the sum rate still decreased as the consumption limit decreased. This shows

that by forcing the turn off of some BSs, it increases the loading of the remaining BSs,

which results in lower rate for the users that was not compensated by the decrease in

interference from the BS turn off.



Chapter 5

Conclusion

In this thesis, we proposed a non-greedy heuristic joint optimization algorithm to max-

imize the trade-off between network log-utility and network consumption power. When

the consideration is only on network maximization, simulation results, based on the regu-

lar deployment of access nodes in a two-tiered HetNet, showed that there is no benefit in

associating users to multiple BSs due to BS resource constraints. Furthermore, cell-edge

user rates are improved when the downlink spectrum is divided into multiple sub-bands

due to the ability of BSs to turn off on certain bands to reduce interference and encourage

users to moved to lower tiers of HetNet. Furthermore, since each BS can potentially serve

users over the entire downlink spectrum under the multi-band setup, this has greater po-

tential to increase network capacity than the SFR scheme considered, as SFR restricts

the amount of bandwidth each BS can access to serve its users. In addition, in the

single-band setting, the proposed problem formulation accounts for BSs with zero loads

and thus outperforms DCD algorithms in [7] and subgradient algorithms in [6] when the

number of users in the network is small. When there is a total network consumption

limit, the proposed algorithm is a non-greedy heuristic for finding the optimal trade-off

between network utility and total consumption power. Results of the propose algorithm

showed higher network utility for fixed consumption limit than that from state-of-art

39
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greedy algorithms that were widely discussed in literature. This is due to the fact that

these greedy algorithms tend to select BSs that maximize instantaneous user rates and

turn off lower tier BSs pre-maturely, and in turn deteriorates rates for cell-edge users

who must now be forced to associate with a far macro BS. Joint consideration of user

association and BS power control increases the effectiveness of network heterogeneity

and therefore increases the network capacity of HetNets. The results of joint optimiza-

tion with network consumption trade-off also revealed that the network utility cannot

be maintained at lower consumption powers by forcing certain BSs off, as the reduced

interference does not account for the increased load of remaining active BSs.
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